
REPORT 2023

2

TABLE OF CONTENTS

PART 1: EXECUTIVE SUMMARY........................4
WELCOME TO BSIMM14.. 5

BSIMM14 DATA HIGHLIGHTS .. 6

TRENDS AND INSIGHTS SUMMARY.. 7
How Software Security Is Changing...7
Expanding Security’s Scope...7
Who Owns Security..8
Important Decisions in Software Security...8

CALL TO ACTION.. 9
Plan Your Journey..9
Get a Handle on What You Have...9
Make the Right Investments..9

THE BSIMM SKELETON .. 10

PART 2: TRENDS AND INSIGHTS....................12
Evolution of Shift Everywhere..13
Integrating Tooling...13
Governance and Automation...13
Security Touchpoints...13
Enabling People ...14

SOFTWARE SUPPLY CHAIN RISK MANAGEMENT........................... 14
Software Bill of Materials (SBOM)..14
Open Source Risk Management..14
Vendor Management and Bespoke Software...................................14

PRODUCT SECURITY AND APPLICATION SECURITY...................... 14
Shipping Products to Dangerous Environments..............................14
Growing “Product Security Program” Representation15

SECURITY ENABLERS ..15
Security Champions..15
Cloud Architecture...15

SECURITY ECONOMICS..15

TOPICS WE’RE WATCHING...15

PART 3: BSIMM PARTICIPANTS..................... 16
PARTICIPANTS ..17

PART 4: QUICK GUIDE
TO SSI MATURITY .. 19
A BASELINE FOR SSI LEADERS..20

Is Your SSI Keeping Pace with Change
 in Your Software Portfolio?...20
Are You Creating the DevSecOps Culture You Need?.....................20
Are You Shifting Security Efforts Everywhere
in the Engineering Lifecycle?..20
How Does Your SSI Measure Up?...20

USING A BSIMM SCORECARD TO MAKE PROGRESS.....................20
Understand Your Organizational Mandate..21
Build the Scorecard..21
Make a Strategic Plan and Execute..21

PART 5: THE BSIMM FRAMEWORK..............24
CORE KNOWLEDGE..25

UNDERSTANDING THE MODEL ...26

PART 6: THE BSIMM ACTIVITIES...................27
ACTIVITIES IN THE BSIMM ..28

GOVERNANCE ...28
Governance: Strategy & Metrics (SM) ...28
Governance: Compliance & Policy (CP) ..30
Governance: Training (T) ..32

INTELLIGENCE ...34
Intelligence: Attack Models (AM) ...34
Intelligence: Security Features & Design (SFD)36
Intelligence: Standards & Requirements (SR)37

SDLC TOUCHPOINTS ...39
SDLC Touchpoints: Architecture Analysis (AA)39
SDLC Touchpoints: Code Review (CR) ..40
SDLC Touchpoints: Security Testing (ST) ...42

DEPLOYMENT ... 44
Deployment: Penetration Testing (PT) ..44
Deployment: Software Environment (SE)..45
Deployment: Configuration Management &
Vulnerability Management (CMVM) ..46

3

APPENDICES.. 49
A. ROLES IN A SOFTWARE SECURITY INITIATIVE 50

EXECUTIVE LEADERSHIP ..50

SOFTWARE SECURITY GROUP LEADERS ...51

SOFTWARE SECURITY GROUP (SSG) ..52

SECURITY CHAMPIONS (SATELLITE)..52

KEY STAKEHOLDERS...53

B. HOW TO BUILD OR UPGRADE AN SSI 54

CONSTRUCTION LESSONS FROM THE PARTICIPANTS..................54
Cultures..55
A New Wave in Engineering Culture...55
Understanding More About DevOps...56
Convergence as a Goal...56

FOR AN EMERGING SSI: SDLC TO SSDL..57
Create a Software Security Group ...58
Document and Socialize the SSDL...58
Inventory Applications ..58
Apply Infrastructure Security ..59
Deploy Defect Discovery ..59
Manage Discovered Defects..59
Publish and Promote the Process..59
Progress to the Next Step in Your Journey59

FOR A MATURING SSI: HARMONIZING OBJECTIVES..................... 60
Unify Structure and Consolidate Efforts..60
Expand Security Controls...60
Engage Development..61
Inventory and Select In-Scope Software...61
Enforce Security Basics Everywhere..61
Integrate Defect Discovery and Prevention.......................................62
Upgrade Incident Response...62
Repeat and Improve..62

FOR AN ENABLING SSI: DATA-DRIVEN IMPROVEMENTS.............62
Progress Isn’t a Straight Line...62
Push for Agile-Friendly SSIs...63

C. DETAILED VIEW OF THE BSIMM FRAMEWORK64

THE BSIMM SKELETON.. 64

CREATING BSIMM14 FROM BSIMM13.. 64

MODEL CHANGES OVER TIME... 68

D. DATA: BSIMM14 ... 71

AGE-BASED PROGRAM CHANGES...71

ACTIVITY CHANGES OVER TIME..73

E. DATA ANALYSIS: VERTICALS... 75

IOT, CLOUD, AND ISV VERTICALS ..76

FINANCIAL, HEALTHCARE, AND INSURANCE VERTICALS76

FINANCIAL AND TECHNOLOGY VERTICALS77

TECHNOLOGY VS. NON-TECHNOLOGY ..78

VERTICAL SCORECARDS..78

F. DATA ANALYSIS: LONGITUDINAL.. 83

BUILDING A MODEL FOR SOFTWARE SECURITY83

CHANGES BETWEEN FIRST AND SECOND ASSESSMENTS........ 84

CHANGES BETWEEN FIRST AND THIRD ASSESSMENTS............. 86

G. DATA ANALYSIS: SATELLITE
(SECURITY CHAMPIONS)...88

H. DATA ANALYSIS: SSG ..90

SSG CHARACTERISTICS.. 90

SSG CHANGES BASED ON AGE..92

4

PART 1:
EXECUTIVE
SUMMARY

5

EXECUTIVE SUMMARY
In 2008, application security, research, and analysis experts set
out to gather data on the different paths that organizations take
to address the challenges of securing software. Their goal was to
conduct in-person interviews with organizations that were known to
be highly effective in software security initiatives (SSIs), gather details
about their efforts, analyze the data, and publish their findings to help
others.

The result was the Building Security In Maturity Model (BSIMM), a
descriptive model—published as BSIMM1—that provides a baseline
of observed activities (i.e., controls) for SSIs to build security into
software and software development. Because these initiatives often
use different methodologies and different terminology, the BSIMM
also creates a common vocabulary everyone can use. In addition, the
BSIMM provides a common methodology for starting and improving
SSIs of any size and in any vertical market.

Since BSIMM1 in 2009, we’ve been early reporters on security
program changes across people, process, technology, culture,
compliance, digital transformation, and much more. Welcome to the
BSIMM14 report, and thank you for reading.

WELCOME TO BSIMM14

If you’re in charge of an SSI, understanding the BSIMM
and its use by participants will help you plan strategic
improvements. If you’re running the technical aspects
of an initiative, you can use the how-to guide (in Part 4)
and activity descriptions (in Part 6) to help define tactical
improvements to people, process, technology, and
culture.

Each BSIMM annual report is the result of studying real-world SSIs,
which many organizations refer to as their application or product
security program or as their DevSecOps effort. Each year, a variety
of firms in different industry verticals use the BSIMM to create a
software security scorecard for their programs that they then use to
inform their SSI improvements. Here, we present BSIMM14 as built
directly out of the data we observed in 130 firms.

In the rapidly changing software security field, it’s important to
understand what other organizations are doing in their SSIs.
Comparing the efforts of more than 100 companies to your own will
directly inform your strategy for improvement and growth.

BSIMM core knowledge is the activities we have directly observed
in our participants—the group of firms that use the BSIMM as part
of their SSI management. Each participant has their own unique
SSI with an emphasis on the building security in activities important
to their business objectives, but they collectively use the activities
captured here. We organize that core knowledge into a software
security framework (SSF), represented in Part 5. The SSF comprises
four domains—Governance, Intelligence, SSDL Touchpoints, and
Deployment—with those domains currently composed of 126
activities. The Governance domain, for example, includes activities
that fall under the organization, management, and measurement
efforts of an SSI.

From an executive perspective, you can view BSIMM activities
as preventive, detective, corrective, or compensating controls
implemented in a software security risk management framework.
Positioning the activities as controls allows for easier understanding
of the BSIMM’s value by governance, risk, compliance, legal, audit,
and other executive management groups.

As with any research work, there are some terms that have specific
meanings in the BSIMM. The box below shows the most common
BSIMM terminology.

BSIMM Terminology
Nomenclature has always been a problem in computer
security, and software security is no exception. Several
terms used in the BSIMM have particular meaning for us.
The following list highlights some of the most important
terms used throughout this document:

•	 Activity. Actions or efforts carried out or facilitated by the
SSG as part of a practice. Activities are divided into three
levels in the BSIMM based on observation rates.

•	 Capability. A set of BSIMM activities spanning one or more
practices working together to serve a cohesive security
function.

•	 Champions. A group of interested and engaged developers,
cloud security engineers, deployment engineers, architects,
software managers, testers, or people in similar roles who
have an active interest in software security and contribute to
the security posture of the organization and its software.

•	 Data pool. The collection of assessment data from the
current participants.

•	 Domain. One of the four categories the framework is
divided into, i.e., Governance, Intelligence, SSDL Touchpoints,
and Deployment.

•	 Participants. The group of firms in the current data pool.

•	 Practice. A grouping of BSIMM activities. The SSF is
organized into 12 practices, three in each of four domains.

•	 Satellite. A group of individuals, often called security
champions, that is organized and leveraged by an SSG.

•	 Secure SDL (SSDL). Any software lifecycle with integrated
software security checkpoints and activities.

•	 Software security framework (SSF). The basic structure
underlying the BSIMM, comprising 12 practices divided into
four domains.

•	 Software security group (SSG). The internal group charged
with carrying out and facilitating software security. The
group’s name might also have an appropriate organizational
focus, such as application security group or product security
group.

•	 Software security initiative (SSI). An organization-wide
program to instill, measure, manage, and evolve software
security activities in a coordinated fashion. Also referred to
in some organizations as an application security program,
product security program, or perhaps as a DevSecOps
program.

6

BSIMM14 DATA HIGHLIGHTS

Use the information in this section to answer common
questions about BSIMM data, such as, “What are some
data pool statistics?,” “Which activities are most firms
doing?,” and “How are software security efforts changing
over time?”

Note: Items in italic green refer to specific BSIMM activities in Part 6.

Activities are the building blocks of the BSIMM, the smallest units of
granularity implemented across organizations to build SSIs. Rather
than dictating a set of prescriptive activities, the purpose of the
BSIMM is to descriptively observe and quantify the actual activities
carried out by various kinds of SSIs across many organizations.

The BSIMM is an observational model that reflects current software
security efforts, so we adjust it annually to keep it current. For
BSIMM14, we’ve made the following changes to the model based on
what we see in the BSIMM data pool:

•	 We moved the activities provide expertise via open collaboration
channels, have a research group that develops new attack
methods, monitor automated asset creation, identify open source,
and track software defects found in operations through the fix
process because we now see them more frequently.

•	 We moved the activities create technology-specific attack patterns
and maintain and use a top N possible attacks list because they’re not
growing as fast as other common activities in their practice area.

•	 We added the activity protect integrity of development toolchains
because we are beginning to see this more.

Unique in the software security industry, the BSIMM project has
grown from nine participating companies in 2008 to 130 in 2023, now
with approximately 3,600 software security group (SSG) members
and 7,500 security champions. The average age of the participants’
SSIs is 5.2 years. The BSIMM project shows consistent growth even
as participants enter and leave over time—we added 23 firms for
BSIMM14 and dropped 23 others whose data hadn’t been refreshed.

This 2023 edition of the BSIMM report—BSIMM14—examines
anonymized data from the software security activities of 130
organizations across various verticals, including cloud, financial
services, financial technology (FinTech), healthcare, independent
software vendors (ISVs), insurance, Internet of Things (IoT), and
technology organizations.

The 7 Habits of Highly Effective People explores the theory that
successful individuals share common qualities in achieving their
goals and that these qualities can be identified and applied by others.
The same premise can be applied to SSIs. Listed in Table 1 are the
10 most observed activities in the BSIMM14 data pool. The data
suggests that if your organization is working on its own SSI, you
should consider implementing these activities.

Table 2 shows some activities that have experienced exceptionally
high growth over the past 12 months. Not surprisingly, some of
these activities, such as make code review mandatory for all projects
and identify open source, are mentioned in the Trends and Insights
section. In addition, the streamline incoming responsible vulnerability
disclosure activity introduced in BSIMM12 has the largest increase

in observation count. Note that for some of the activities in Table 2,
the growth in observation is a relatively new change. For example,
the activity have a research group that develops new attack methods
saw virtually no growth from BSIMM9-BSIMM12 but had a significant
jump in observation rates in BSIMM13, and BSIMM14 has continued
that climb. Two years of growth suggests the change is meaningful
and the activities are worth considering for your program.

In BSIMM13, we reported new growth after little change over time in
the enforce security checkpoints and track exceptions activity. This
activity has continued to grow in BSIMM14 as firms are able to take
advantage of modern automation options in the development pipeline.

In the other direction, in BSIMM13, we reported that the have SSG
lead design review efforts activity saw continued growth for years
but then decreased significantly for BSIMM13. In BSIMM14, this
decrease has corrected, with a small growth in observations this year.

TABLE 1. TOP ACTIVITIES BY OBSERVATION PERCENTAGE. The most
frequently observed activities in BSIMM14 are likely important to all SSIs.

BSIMM14 TOP 10 ACTIVITIES

PERCENT DESCRIPTION
90.8% Implement security checkpoints and associated

governance.

90.0% Create or interface with incident response.

87.7% Identify privacy obligations.

87.7% Use external penetration testers to find problems.

86.9% Ensure host and network security basics are in place.

86.2% Use automated code review tools.

84.6% Perform edge/boundary value condition testing during
QA.

83.1% Perform security feature review.

79.2% Unify regulatory pressures.

79.2% Create a security portal.

BSIMM14 TOP 10 ACTIVITIES GROWTH BY COUNT

INCREASE DESCRIPTION

15 Streamline incoming responsible vulnerability disclosure.

13 Implement cloud security controls.

12 Make code review mandatory for all projects.

11 Have a research group that develops new attack
methods.

11 Define secure deployment parameters and
configurations.

11 Use application containers to support security goals.

10 Schedule periodic penetration tests for application
coverage.

9 Identify open source.

8 Document a software compliance story.

8 Enforce security checkpoints and track exceptions.

TABLE 2. TOP ACTIVITIES BY RECENT GROWTH IN OBSERVATION COUNT.
These activities had the largest growth in BSIMM14, out of 32 firms measured
during the last 12 months, which means they are likely important to your
program now or will be soon.

7

TRENDS AND INSIGHTS SUMMARY

These BSIMM trends and insights are a distillation
of software security lessons learned across 130
organizations that collectively have 11,100 security
professionals helping about 270,000 developers do
good security work on about 97,000 applications.
Use this information to inform your own strategy for
improvement.

Trends describe shifts in SSI behavior that affect activity
implementation across multiple areas. Larger in scope than an
activity, or even a capability that combines multiple activities within
a workflow, we believe these trends show the way organizations
are executing groups of activities within their evolving culture. For
example, there’s a clear trend of firms taking advantage of security
automation over manual subject-matter expert (SME)-driven security
activities. Over time, we’ve seen a trend in testing being applied
throughout the software lifecycle (“shift everywhere”), followed by
trends in additional testing (e.g., composition analysis) and in testing
automation (e.g., as checkpoints in the software development
lifecycle [SDLC]).

Refer to Part 2: Trends and Insights later in this document for more.

How Software Security Is Changing
Organizations are modernizing development toolchains to give their
developers the best tools for building software. Security leaders
are taking advantage of the easy-to-use yet powerful automation
available in these toolchains to update security testing and
touchpoints. This is allowing shift everywhere as a philosophy to
move beyond testing to decisions and governance.

When automation makes security tasks easier, trends emerge around
automated activities. Modern toolchains, for example, allow for
security testing in the QA stage to be automated, much like SAST
scans that happen earlier in the development process. This has led
to a 10% growth in the integrate opaque-box security tools into the QA
process and include security tests in QA automation activities.

Security teams that embraced the shift everywhere testing
philosophy found that their pipelines were able to take scripted
actions based on the results of those automated security tests. The
automated decisions enabled by these pipelines led to a 60% growth
in the integrate software-defined lifecycle governance activity in the
past year.

Firms are also using automation to better gather and make use of
intelligence provided by sensors in the pipeline. Observations of firms
that build a capability to combine AST results have nearly doubled.
Additionally, the use of captured knowledge by the enforce secure
coding standards activity is again seeing growth after a period of
decline.

Finally, some firms are using the insights gleaned from sensors
throughout the development lifecycle to proactively prevent
vulnerabilities before they become an issue for developers. Drive
feedback from software lifecycle data back to policy was observed
at an increased rate of 36% in the past year, further assisting the
engineers who drive the development lifecycle.

Expanding Security’s Scope
External pressures like government regulations and increased
awareness of supply chain threats are leading organizations to
extend risk management to the software that they integrate from
outside sources, the toolchains used by their developers, and the
software present in their operating environments. We have added
the new activity protect integrity of development toolchains to begin
tracking how firms protect software and artifacts as they pass
through their development pipeline.

The first step many firms take in understanding the risk they’re
bringing into their software by integrating third-party and open source
components is scanning with a software composition analysis tool.
These moment-in-time checks allow security teams to uncover
newly published vulnerabilities in software. After scanning all of the
integrated components, teams create bills of materials for deployed
software, observations of which grew by 22% from BSIMM13 to
BSIMM14.

What Is Shift Everywhere, Really?
To define shift everywhere, let’s start by stating what
it’s not: it’s not trying to do all the security things
everywhere in all parts of the software lifecycle (SLC)
all the time. Instead, shift everywhere is a philosophy;
it’s an approach to SLC governance that acknowledges
the reality that consistently achieving acceptably
secure software is a shared responsibility, and that this
responsibility traverses legal, audit, risk, governance,
IT, cloud, technology, vendor management, and
resilience, among others. Each stakeholder has their
own business processes to execute, but each also needs
to do their version of security sign-off, which requires
understandable and usable telemetry from the SLC
toolchain.

Not so very long ago, the only view into the SLC
afforded to stakeholders was, “We shipped it yesterday!”
That was horrible then and is much worse now, mainly
because automation generates telemetry that is easy
to route to stakeholders. A shift everywhere approach
starts by asking how these roles get the information
they need, when they need it, in the processes they
normally use, with little or no additional friction, then it
bridges that gap, giving each role access to appropriate
sensors, whenever they need it, from anywhere in
the SLC. Shift everywhere is a philosophy about the
security testing and sensors that generate information
for all stakeholders in the company, it’s not rooted in
increasing the security spend or effort. Accordingly,
shift everywhere is not adding more security for
security’s sake, instead, it’s ensuring that every security
stakeholder can knowledgably make risk management
decisions.

8

After scanning individual projects and compiling software bills of
materials (SBOMs), firms seek to take a more holistic approach
to managing open source risk across the portfolio. Two activities
associated with this portfolio-wide risk management, identify open
source and control open source risk, both saw just under 10% growth
from BSIMM13 to BSIMM14.

Firms are also getting tough on vendors and expecting the software
they buy to be secure at the time of acceptance. Observations of the
ensure compatible vendor policies activity, which reflects how firms
enforce security standards on organizations that provide bought
and bespoke software, grew by 21% as firms held vendors to similar
standards as they use internally.

Who Owns Security
In a trend a decade in the making, we see a growing number of
organizations referring to their centralized effort as a product security
program (vs. application or software security). We measure this by
noting where SSI reporting chains pass through a Chief Product
Officer, VP of Products, or Product Security Manager, which now
accounts for almost a quarter of the data pool (31 of 130 firms).
This naming trend seems to correlate with product vendors creating
security programs to manage the risk associated with software that
leaves the organization to exist in hostile environments for years to
decades (as compared to applications in private data centers).

Initially, product security teams were formed to deal with the unique
attack surfaces of their products compared to the web applications
in heavy use in financial verticals. Firms continue to deal with unique
threats with create technology-specific attack patterns, an activity that
has grown by 15% since BSIMM13.

Understanding and building technology-specific guidance in
the absence of industry best practices for products with unique
operating requirements is the first step in securing software that
exists in uncontrolled or potentially dangerous locations. To deal
with vulnerabilities discovered after software is deployed to external
environments, security teams will stand up a Product Security
Incident Response Team (PSIRT) function to handle communication
about and reactions to reported vulnerabilities. Observations show
that the associated streamline incoming responsible vulnerability
disclosure activity is now present in more than a quarter of the
BSIMM14 data pool.

Important Decisions in Software Security
For such a complicated endeavor, software development and its
associated security governance is simple on paper: write some
code, then build it, applying all the security testing there was time
for. Development fixed the worst security defects discovered, with
some of the remainder becoming requirements for the next release.
However, actually performing all those steps in the real world can
be expensive in terms of hours spent on manual processes. BSIMM
data shows some of the decisions made by firms that can help scale
security in spite of those expenses.

The oldest insight provided by BSIMM data is that the decision to
build and operate a security champions program has a measurable
impact on total BSIMM scores. In BSIMM14, firms with security
champions scored on average 25% higher than firms without one.
Observations of training activities such as conduct software security
awareness training, deliver on-demand individual training, and include
security resources in onboarding were also positively correlated with
the presence of a security champions program.

Joining security champions as an enabler of security capabilities is
the organizational decision to target cloud architectures. When we
assess firms that implement cloud security controls, we also see
scoring gains in the Compliance & Policy and Software Environment
practices of 21% and 44%, respectively.

While cloud architectures have made certain security activities easier
and more affordable for firms, recent economic conditions have
caused a reduction in expensive, SME-driven activities that are not
easy to automate. Observations of build attack patterns and abuse
cases tied to potential attackers declined by 25%, use centralized
defect reporting to close the knowledge loop shrank 18%, and
maintain and use a top N possible attacks list decreased by 31%.

Take stock of your SSI. It’s important
to periodically look at your program
through a different lens.

9

Here are some suggestions on reading
through this BSIMM report:
•	 If you’re experienced with the BSIMM, or if you need

some content to help make your case with executive
management, then Part 2: Trends and Insights is probably
what you’re looking for.

•	 If this is your first time with the BSIMM, we recommend first
reading Part 5 for context and then returning here to decide
what to read next.

•	 If you’re starting an SSI or an SSG, or looking to mature
an existing program, start with Part 4: Quick Guide to SSI
Maturity, then move to Appendix B: How to Build or Upgrade
an SSI, and then read through the activities in Part 6.

•	 If you want to get right into the types of software security
controls organizations are using in their SSIs, or if you are
working on building out capabilities, then read Part 6: The
BSIMM Activities.

•	 If you want to see a summary of the BSIMM14 data, review
Appendix D.

•	 If you want to look at our analysis of the BSIMM data, review
Appendices E though H.

CALL TO ACTION

Use the information in this section to prioritize
improvements in your SSI and perhaps also in the SSIs of
your most important software suppliers and partners.

Every SSI has room for improvement, whether it’s improving scale,
effectiveness, depth, risk management, the framework of deployed
activities, resourcing, or anything similar. The following suggestions
represent the broad efforts we see happening in the BSIMM
participants, with various parts likely right for your program as well.

Plan Your Journey
•	 Take stock of your SSI. It’s important to periodically look at your

program through a different lens, and the BSIMM enables that.
Use the guidance in Part 4 to create your own SSI scorecard and
compare it to your expectations.

•	 Create a vision and a strategic plan. Use the activity descriptions
in Part 6 when creating a prioritized action plan for business areas
where your current SSI efforts fall short. Typical investment areas
include risk management, digital transformation, technical debt
removal, technology insertion, and process improvement.

Get a Handle on What You Have
•	 Inventory all your code. It’s likely that you’ll need specialized

automation to keep track of all the code you write and all the code
you bring in from outside the organization. A simple application
inventory will be useful for some things, such as naming risk
managers, but you’ll quickly need specialized inventories, such
as SBOMs, API and microservices lists, various as-code artifacts,
code that is subject to specific compliance needs, and much
more.

•	 Automate, automate, automate. Search for ways to eliminate
error-prone manual processes and reduce friction between
governance and engineering groups, including automating
security decisions. This will require some policy-as-code effort
and tools integration, and might require bringing development
skills into the SSG.

•	 Gather all the data. As more processes become code and more
policy and standards become machine-readable, day-to-day
development and operations will generate significantly more
telemetry about what’s happening and why. Use this data to
ensure that everything’s working as expected.

Make the Right Investments
•	 Innovate in digital transformation. Encourage your SSG and other

security stakeholders to experiment with ways to deliver security
value directly into engineering processes, especially where current
security testing tools don’t always keep up with engineering
changes, such as with serverless architectures, single-page
applications, AI, and zero trust.

•	 Secure the software supply chain. Nearly every organization today
uses third-party code and provides code as a third party to other
organizations. While producing SBOMs is easy, the management
of software, SBOMs, vendors, and vulnerability information is
much more complicated.

•	 Expand software security into adjacencies. Even perfect software
can have its security undermined by mistakes elsewhere in
the organization. Make explicit ties between the SSI and other
security stakeholders working in areas such as container security,
orchestration security, cloud security, infrastructure security, and
site reliability.

In summary, the data shows that new SSIs—from just started to 18
months old—are typically doing about 33 BSIMM activities. These
organizations are also beginning to scale these activities across their
software portfolio, deal with all the change going on around them,
and evolve their risk management strategy.

10

GOVERNANCE

STRATEGY & METRICS COMPLIANCE & POLICY TRAINING

•	 Publish process and evolve as necessary.
•	 Educate executives on software security.
•	 Implement security checkpoints and associated

governance.
•	 Publish data about software security internally

and use it to drive change.
•	 Enforce security checkpoints and track

exceptions.
•	 Create or grow a satellite (security champions).
•	 Require security sign-off prior to software

release.
•	 Create evangelism role and perform internal

marketing.
•	 Use a software asset tracking application with

portfolio view.
•	 Make SSI efforts part of external marketing.
•	 Identify metrics and use them to drive

resourcing.
•	 Integrate software-defined lifecycle governance.
•	 Integrate software supply chain risk

management.

•	 Unify regulatory pressures.
•	 Identify privacy obligations.
•	 Create policy.
•	 Build a PII inventory.
•	 Require security sign-off for compliance-related

risk.
•	 Implement and track controls for compliance.
•	 Include software security SLAs in all vendor

contracts.
•	 Ensure executive awareness of compliance and

privacy obligations.
•	 Document a software compliance story.
•	 Ensure compatible vendor policies.
•	 Drive feedback from software lifecycle data

back to policy.

•	 Conduct software security awareness training.
•	 Deliver on-demand individual training.
•	 Include security resources in onboarding.
•	 Enhance satellite (security champions) through

training and events.
•	 Create and use material specific to company

history.
•	 Deliver role-specific advanced curriculum.
•	 Host software security events.
•	 Require an annual refresher.
•	 Provide expertise via open collaboration

channels.
•	 Reward progression through curriculum.
•	 Provide training for vendors and outsourced

workers.
•	 Identify new satellite members (security

champions) through observation.

INTELLIGENCE

ATTACK MODELS SECURITY FEATURES & DESIGN STANDARDS & REQUIREMENTS

•	 Use a data classification scheme for software
inventory.

•	 Identify potential attackers.
•	 Gather and use attack intelligence.
•	 Build attack patterns and abuse cases tied to

potential attackers.
•	 Collect and publish attack stories.
•	 Build an internal forum to discuss attacks.
•	 Have a research group that develops new

attack methods.
•	 Monitor automated asset creation.
•	 Create and use automation to mimic attackers.
•	 Create technology-specific attack patterns.
•	 Maintain and use a top N possible attacks list.

•	 Integrate and deliver security features.
•	 Application architecture teams engage with the

SSG.
•	 Leverage secure-by-design components and

services.
•	 Create capability to solve difficult design

problems.
•	 Form a review board to approve and maintain

secure design patterns.
•	 Require use of approved security features and

frameworks.
•	 Find and publish secure design patterns from

the organization.

•	 Create security standards.
•	 Create a security portal.
•	 Translate compliance constraints to

requirements.
•	 Identify open source.
•	 Create a standards review process.
•	 Create SLA boilerplate.
•	 Control open source risk.
•	 Communicate standards to vendors.
•	 Use secure coding standards.
•	 Create standards for technology stacks.

THE BSIMM SKELETON
The BSIMM skeleton provides a way to view activities at a glance,
which is useful when thinking about your own SSI. The skeleton
is shown in Figure 1, organized by domains and practices. More
complete descriptions of the activities and examples are available in
Part 6 of this document.

Use this skeleton to understand the software security
activities included in BSIMM14. A list of software security
controls can be a very helpful guide here; the BSIMM
project has worked since 2008 to ensure that its content
matches real-world efforts.

11

SSDL TOUCHPOINTS

ARCHITECTURE ANALYSIS CODE REVIEW SECURITY TESTING

•	 Perform security feature review.
•	 Perform design review for high-risk

applications.
•	 Use a risk methodology to rank applications.
•	 Perform architecture analysis using a defined

process.
•	 Standardize architectural descriptions.
•	 Have SSG lead design review efforts.
•	 Have engineering teams lead AA process.
•	 Drive analysis results into standard design

patterns.
•	 Make the SSG available as an AA resource or

mentor.

•	 Perform opportunistic code review.
•	 Use automated code review tools.
•	 Make code review mandatory for all projects.
•	 Assign code review tool mentors.
•	 Use custom rules with automated code review

tools.
•	 Use a top N bugs list (real data preferred).
•	 Use centralized defect reporting to close the

knowledge loop.
•	 Build a capability to combine AST results.
•	 Create capability to eradicate bugs.
•	 Automate malicious code detection.
•	 Enforce secure coding standards.

•	 Perform edge/boundary value condition testing
during QA.

•	 Drive tests with security requirements and
security features.

•	 Integrate opaque-box security tools into the QA
process.

•	 Drive QA tests with AST results.
•	 Include security tests in QA automation.
•	 Perform fuzz testing customized to application

APIs.
•	 Drive tests with design review results.
•	 Leverage code coverage analysis.
•	 Begin to build and apply adversarial security

tests (abuse cases).
•	 Implement event-driven security testing in

automation.

DEPLOYMENT

PENETRATION TESTING SOFTWARE ENVIRONMENT CONFIGURATION MANAGEMENT
& VULNERABILITY MANAGEMENT

•	 Use external penetration testers to find
problems.

•	 Feed results to the defect management and
mitigation system.

•	 Use penetration testing tools internally.
•	 Penetration testers use all available

information.
•	 Schedule periodic penetration tests for

application coverage.
•	 Use external penetration testers to perform

deep-dive analysis.
•	 Customize penetration testing tools.

•	 Use application input monitoring.
•	 Ensure host and network security basics are in

place.
•	 Implement cloud security controls.
•	 Define secure deployment parameters and

configurations.
•	 Protect code integrity.
•	 Use application containers to support security

goals.
•	 Use orchestration for containers and virtualized

environments.
•	 Use code protection.
•	 Use application behavior monitoring and

diagnostics.
•	 Create bills of materials for deployed software.
•	 Perform application composition analysis on

code repositories.
•	 Protect integrity of development toolchains.

•	 Create or interface with incident response.
•	 Identify software defects found in operations

monitoring and feed them back to engineering.
•	 Track software defects found in operations

through the fix process.
•	 Have emergency response.
•	 Develop an operations software inventory.
•	 Fix all occurrences of software defects found in

operations.
•	 Enhance the SSDL to prevent software defects

found in operations.
•	 Simulate software crises.
•	 Operate a bug bounty program.
•	 Automate verification of operational

infrastructure security.
•	 Publish risk data for deployable artifacts.
•	 Streamline incoming responsible vulnerability

disclosure.
•	 Do attack surface management for deployed

applications.

FIGURE 1. THE BSIMM SKELETON. Within the SSF, the 126 activities are organized into the 12 BSIMM practices, which are within four domains.

12

PART 2:
TRENDS AND
INSIGHTS

13

TRENDS AND INSIGHTS

BSIMM data originates in interviews conducted with
member firms during a BSIMM assessment. Through
these in-depth conversations, assessors look for the
existence of BSIMM activities and assign credit for
activities that are performed with sufficient coverage
across the organization, formality to be repeatable
and consistent, and depth to be effective at managing
associated risk. After each assessment, the observation
data is added to the BSIMM data pool, where statistical
analysis is performed to highlight trends in how firms
secure their software.

You can use this information to understand what others
in your vertical are doing to then inform your own
strategy.

The past year has ushered in many changes for the software security
industry. Artificial intelligence (AI) and large language models (LLMs)
have burst onto the scene, and in addition to being integrated into
products, they’re now used to design applications and hardware,
to create and test software, and in all other parts of the software
lifecycle. Governments the world over are demanding (yet again)
that companies create software security programs, account for
and secure the software that’s integrated into their products, and
continually address software supply chain risk. Companies behind
DevSecOps platforms, cloud solutions, and security tooling are rising
to the challenges from both the marketplace and attackers to make
it easier for developers to automate security tooling and processes.
All of this is happening under economic conditions that see shrinking
software security budgets that make it difficult for firms to maintain
their level of security while cutting expensive SME-driven activities.

As part of their mitigation tactics, many organizations are maturing
their automation to go beyond defect discovery, expanding their
scope to minimize the risk introduced by supply chains, taking a
holistic approach to securing their applications and products, and
leveraging capabilities that make security possible under these
evolving conditions. They’re also increasingly adding AI into their
ecosystems, which can increase productivity but also introduces new
attack surfaces and risk. We’re continuing to watch these and other
developments.

Evolution of Shift Everywhere
Twenty years ago, organizations took notice of the excessive costs,
efforts, and risk associated with testing for security defects only
just before promotion to production. This large friction point helped
drive the development and adoption of SAST tooling, which drove
the software industry to shift testing to the left in the SDLC, a place
where vulnerabilities could be found and fixed faster and for less
money. More than 10 years ago, shift left was expanded to a broader
testing philosophy where firms would also test designs and other
development artifacts (e.g., golden masters, configurations, anything

done as-code) as soon as they were ready—this was the beginning
of shift everywhere. As firms moved some of their security efforts
into engineering toolchains and processes, thereby empowering
developers with the best tooling available to enable DevSecOps
transformations, they also adapted shift everywhere testing
methods into their automated and mature tooling. Security teams
began automating their workflows as soon as developers adopted
modern platforms, allowing defect discovery to transform from a
manual process to something more set-and-forget. As platforms
matured, firms began to not only check for internal and external
governance compliance in the pipeline but also began enforcing
security decisions automatically (e.g., security sign-off of coding
standards adherence). Today, firms that have embraced the culture
of shift everywhere in the pipeline are updating policy and strategy to
integrate security touchpoints as-code throughout the SDLC.

Integrating Tooling
Firms are integrating tooling that enables developers to take a more
active role in QA testing cycles, and security-minded developers are
expanding security activities in this direction as well. Observations
of the integrate opaque-box security tools into the QA process and
include security tests in QA automation activities both rose by about
10% from BSIMM13 to BSIMM14. While already one of the top
activities, use automated code review tools also rose by about 5%
in the same period as developers took advantage of the automated
SAST tooling included in modern CI/CD pipeline solutions. This
security automation is the bedrock that the virtuous cycle of modern
shift everywhere runs on.

Governance and Automation
As shift everywhere matured, firms began to automate pipeline
security decisions in response to security findings from automated
tooling. The activity integrate software-defined lifecycle governance
was introduced in BSIMM10 and has seen slow but steady progress,
growing 60% in the past year. Additionally, because it is bad practice
to mandate unsustainable security measures, the ease of automation
has removed that barrier and allowed firms to make code review
mandatory for all projects, with an observation increase of about 68%
since BSIMM10. Automating decisions and governance allows firms
to manage risk in real time.

Security Touchpoints
Achieving well-secured software is more than just finding defects
and breaking the build, given the variety of opportunities for security
touchpoints to enhance security in the SSDL. Automation is enabling
firms to implement the shift everywhere philosophy of right-sized
testing at the right time in native processes, and we see that the
implement event-driven security testing in automation activity has
grown from 2 to 6 observations in the past two years. Firms are
also getting smarter via activities like build a capability to combine
AST results, which has nearly doubled, and enforce secure coding
standards, which is again seeing growth after a period of decline.
Shifting security touchpoints everywhere via automation represents
the next phase of the shift everywhere philosophy.

14

Enabling People
The benefit of embracing shift everywhere is that it frees up people to
do what they do best: being creative, solving problems, and building
things. Firms that have taken full advantage of automation can then
drive feedback from software lifecycle data back to policy and have
done so at an increase of 36% in the past year to better enable the
developers who drive the SDLC. Another way to make decisions that
relieves the security demands placed on developers is to eliminate
classes of vulnerabilities proactively, with observations of the fix all
occurrences of software defects found in operations and enhance
the SSDL to prevent software defects found in operations activities
growing by just over 25%. By using automation as part of their
DevSecOps culture, firms are leveraging toolchains to make security
easier and creating more free time for humans.

SOFTWARE SUPPLY CHAIN RISK
MANAGEMENT
Last year, we reported on how Executive Order 14028 and supply
chain attacks led to an increased focus on managing risk in the
software supply chain. To reflect observed efforts to not be the
weak link in the software supply chain, we added a new activity,
protect integrity of development toolchains, to begin tracking how
firms protect software and artifacts as they pass through their
development pipeline. Over the past year, more firms have expanded
their security programs to formally address supply chain risks by
accounting for risk in the software they purchase from vendors and
procure from open source projects.

Software Bill of Materials (SBOM)
Firms often take the first step in understanding which application
components come through the supply chain by creating a bill of
materials of included libraries and dependencies for the software
they’re using or integrating. Organizations are slowly building SBOMs,
with a 22% increase in observations of the create bills of materials for
deployed software activity from BSIMM13 to BSIMM14. In BSIMM13,
we introduced the perform application composition analysis on
code repositories activity and have two observations so far. While
SBOMs were initially found to be useful when responding to critical
vulnerabilities in open source libraries, organizations are also using
them to make informed risk decisions about what they are including
in their production software.

Open Source Risk Management
Organizations have been incorporating open source projects into
their software for decades, but OSS risk management has been
a widespread priority for only the past five years or so. Activities
associated with OSS risk management, identify open source and
control open source risk, both saw just under 10% growth from
BSIMM13 to BSIMM14. Identifying and controlling open source in use
by developers is vital to safely taking advantage of the many benefits
of OSS use.

Vendor Management and Bespoke Software
BSIMM14 data shows that firms are changing their relationships with
vendors and expecting vendors to be more mature in how they build
secure software. While observations of the ensure compatible vendor
policies activity, which reflects how firms enforce security standards
on organizations that provide bought and bespoke software, grew
by 21% in the past year, activities around create SLA boilerplate and
include software security SLAs in all vendor contracts both saw no
growth. In addition, there were small declines in provide training to
vendors and outsourced workers and in communicate standards to
vendors. More firms are expecting vendors to supply software that
meets or exceeds their security expectations without the additional
effort of security coaching, training, or hand-holding.

PRODUCT SECURITY AND
APPLICATION SECURITY
Commercial product firms historically have had unique security
requirements not faced by other verticals in that their software must
exist outside of safe, protected, and controlled data centers. This,
in turn, drives differences in their required post-deployment security
capabilities. After steady growth for over a decade, over one-quarter
of firms (35 of 130) now have SSI reporting chains that pass through
a Chief Product Officer, VP of Products, or a Product Security
Manager. The change in nomenclature from application and software
security titles appears to originate in a desire to focus their SSIs on
specific capabilities tied to their unique software lifecycle.

Product-driven Security Requirements
Some of the activities with the largest amount of growth in the
BSIMM14 data pool aid in providing security guidance to developers
who produce software with risk profiles different from traditional web
applications. To secure software with unique risk profiles, firms have
worked toward understanding which attack surfaces and methods
exist and then building new standardized design patterns that are
resilient against those attacks. Observations of have a research
group that develops new attack methods and drive analysis results
into standard design patterns have both doubled since BSIMM13.
Additionally, the identify potential attackers and create technology-
specific attack patterns activities have each grown by just over 15%.
Understanding the attacks that products will be subject to is the first
step in building software that will be resilient to the risk inherent in
the unique environments where those products will be installed.

Shipping Products to Dangerous Environments
While firms in certain verticals typically deploy developed software
to data centers or cloud environments that they control, many
product companies have little or no ongoing control of their
deployed software. This scenario sets different requirements for
post-deployment risk management. As the representation of product
security programs in the BSIMM data pool has grown, the streamline
incoming responsible vulnerability disclosure activity, which is a major
function of the PSIRT capability, has grown to more than 25% of the
data pool in just two years. Additionally, developers can prepare their
products for client-controlled environments, as seen in observations
of the protect code integrity and define secure deployment parameters
and configurations activities, each of which grew by nearly 30% in the
same period.

15

Growing “Product Security Program”
Representation
According to historical BSIMM data, the first product security
program (as judged by reporting chain titles) didn’t show up until
BSIMM4. Since then, the representation of SSIs led by someone
with a product security title, or who reports through a VP or Director
of Product Security or a Chief Product Officer, has grown from 2%
in BSIMM4 to 26% in BSIMM14. From BSIMM6 through BSIMM10,
the representation of these product security leadership roles was
relatively flat at 9-10% of the data pool. In BSIMM11, that number
jumped to almost 15% and has grown to 26% today. There are many
reasons why commercial product firms are focusing on software
security, ranging from external drivers like regulations from the FDA
or other government agencies, internal pressures to enhance product
feature sets by embedding connected software, and pressure from
customers and the United States government.

SECURITY ENABLERS
As organizations seek to modernize their software security programs,
there are actions they can take that happen outside of the SSG that
have a positive impact on the larger application security posture.
Historically, the trend that has stayed true the longest is that firms
with security champions (or satellite) programs are able to integrate a
greater number of BSIMM activities. However, this trend is now joined
by a second security enabler in the adoption of cloud architecture.
Companies have moved to cloud environments to gain cost savings,
dynamically scale capacity, and take advantage of modern features
without costly data center upgrades. Security teams have also seen
gains as their firms move to the cloud.

Security Champions
Security champions programs have long been an enabler for
software security teams. A security champion is usually a developer,
QA tester, or architect who is deputized into an enabler role and
provided with additional training and security resources to be
the local security professional in a development team. BSIMM14
firms with a security champions program (80 of 130 firms) score
on average 25% higher (13 observed activities) than firms without
one (50 of 130). This aspect of shared responsibility is crucial to
scaling distributed security tasks such as tool automation, security
defect triage and remediation, and incident response. Additionally, in
BSIMM14, programs with security champions had several training
activities that were present at a much higher rate than those without.
These training activities include conduct software security awareness
training and deliver on-demand individual training, which were about
40% and 50% higher in firms with champions than those without,
as well as include security resources in onboarding, which was 33%
higher. Having trained security champions and developers facilitates
smarter tool use and more secure development.

Cloud Architecture
Cloud architecture has been around for more than a decade, but like
any technology, it continues to change and improve. The combination
of modern cloud-native application protection platforms (CNAPP),
industry knowledge captured as secure design patterns, and one-
click security tooling allows integrating security in ways that were
previously more burdensome in company-owned data centers.

In the subset of firms that secure cloud-native architectures via
the implement cloud security controls activity, we see gains in the
Penetration Testing, Compliance & Policy, and Software Environment
practices of 35%, 21%, and 44%, respectively. Activities that are made
easier in cloud environments also saw growth from BSIMM13 to
BSIMM14. The use application behavior monitoring and diagnostics
activity grew by 64%, and observations of monitor automated asset
creation grew by 45%. Additionally, observations of find and publish
secure design patterns from the organization, require use of approved
security features and frameworks, and use application containers to
support security goals grew by around 25%. We expect to see this
trend continue as firms continue to target cloud environments for
new development.

SECURITY ECONOMICS
Not all trends are positive, and many companies have seen reduced
security budgets. Activities that rely on experts to perform manual
tasks have seen declines as security teams seek to maximize
their return on investment by focusing on automation. The develop
an operations software inventory and use a data classification
scheme for software inventory activities saw a 9 and 7 count drop
in observations for BSIMM14. Additionally, expert-driven tasks like
begin to build and apply adversarial security tests (abuse cases)
declined 25%, use centralized defect reporting to close the knowledge
loop shrank 18%, and maintain and use a top N possible attacks list
dropped 31%. The rise of automated activities that allow security
teams to shift everywhere and thrive in the cloud appears to be
due to a focus in attention away from expensive, slow, and manual
security activities.

TOPICS WE’RE WATCHING
This year saw huge changes in priorities, technologies, and
possibilities. The demands of cloud, toolchains, tools, application
security adjacencies, AI, and government scrutiny are leading to a
vastly increased program scope, which is in turn necessitating a new
era of shared responsibility between SSGs and engineering.

Participant feedback indicates that the following might influence their
future efforts:

•	 The continuing refinement of the product security culture as
commercial software firms seek to meet different security
objectives through greater coordination of application, cyber,
manufacturing, and IT security teams.

•	 Regulations as other countries follow the United States
government lead and mandate security requirements for any
government software suppliers, which will naturally flow downhill
to their suppliers.

•	 The expansion of AI-generated code, integration of machine
learning models into software, and use of intelligent bots in the
SDLC.

16

PART 3:
BSIMM
PARTICIPANTS

17

PARTICIPANTS
The participating organizations fall across various verticals, including
cloud, financial services, FinTech, ISVs, insurance, IoT, healthcare, and
technology organizations (see Figure 2).

Unique in the software security industry, the BSIMM project has
grown from nine participating companies in 2008 to 130 in 2023,
currently with nearly 3,600 software security group members and
more than 7,500 satellite members (aka security champions). Today,
the average age of the participants’ SSIs is 5.2 years. As seen in Table
3, the BSIMM project shows consistent growth even as organizations
enter and leave over time.

FIGURE 2. BSIMM14 PARTICIPANTS. Participant percentages per tracked region and vertical.

THE BSIMM PARTICIPANTS

BSIMM participants comprise software security leaders
and team members from around the globe. They have
a common mission to continuously improve their SSIs
in light of changes in the world around them. You can
use the information they’ve provided to learn from their
efforts.

This 2023 edition of the BSIMM report—BSIMM14—examines
anonymized data from the software security activities of 130
organizations. This diverse group spans multiple sizes of security
teams, development teams, and software portfolios, as well as
regions, vertical markets, and security team ages.

TABLE 3. BSIMM PARTICIPANT NUMBERS OVER TIME. The chart shows how the BSIMM study has grown over the years.

BSIMM PARTICIPANT NUMBERS OVER TIME

BSIMM14 BSIMM13 BSIMM12 BSIMM11 BSIMM10 BSIMM9 BSIMM8 BSIMM7 BSIMM1

Firms 130 130 128 130 122 120 109 95 9

SSG Members 3,572 3,342 2,837 1,801 1,596 1,600 1,268 1,111 370

Satellite Members 7,427 8,508 6,448 6,656 6,298 6,291 3,501 3,595 710

Developers 267,731 408,999 398,544 490,167 468,500 415,598 290,582 272,782 67,950

Applications 96,361 145,303 153,519 176,269 173,233 135,881 94,802 87,244 3,970

Average SSG Age
(Years) 5.20 5.00 4.41 4.32 4.53 4.13 3.88 3.94 5.32

SSG Average of
Averages (SSG per
Developers)

3.87 / 100 3.01 / 100 2.59 / 100 2.01 / 100 1.37 / 100 1.33 / 100 1.60 / 100 1.61 / 100 1.13 / 100

15%

12%

73%

APAC North AmericaEMEA

Healthcare FinTech Insurance Other

ISVIoT Technology FinancialCloud

5%
5%

7%

8%

10%

14%
15%

18%

19%

18

ACKNOWLEDGEMENTS
Our thanks to the 130 executives, including those who wish to remain
anonymous, from the SSIs we studied to create BSIMM14.

Our thanks also to the nearly 151 individuals who helped gather the
data for the BSIMM data pool over time.

In particular, we thank Adam Brown, Akhil Mittal, Akshay Sawant,
Alex Jupp, Alistair Nash, Anders Stadum, Balaji Padmanabhan, Ben
Hutchison, Brendan Sheairs, Chandu Ketkar, Daniel Cohen, Devaraj
Munuswamy, Don Pollicino, Durai G, Eason Yu, Eli Erlikhman, Harshad
Janorkar, Ibrahim Khan, Iman Louis, Jatin Virmani, Jonathan Dunfee,
Larrry Cox, Lekshmi Nair, Li Zhao, Matt Chartrand, Michael Fabian,

Mike Lyman, Nivedita Murthy, Rajiv Harish, Ravinder Reddy Amireddy,
Sachin Shetty, Sam Schueller, Sammy Migues, Smith Kaneria,
Stanislav Sivak, Stephen Gardner, Surya Uddhi Nagaraj, Thaddeus
Bender, Uzear Ahmed, Vijay Sharma, Warrie Proffitt, and Zhihao
Yu. We would also like to thank David Johansson and Surya Uddhi
Nagaraj for their work managing the BSIMM tooling and data and
creating the extracts used in this report. In addition we would like to
thank Austin Kleineschay, Jennifer Stout, and Rachel Bay for their
work on various aspects of this report.

BSIMM14 was authored by Jamie Boote, Eli Erlikhman, Ben
Hutchison, Mike Lyman, and Sammy Migues

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/legalcode
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

AARP

Aetna

Airoha

AON

Arlo

Axway

Bank of America

Bell Network

CIBC

Citi

Depository Trust & Clearing
Corporation

Diebold Nixdorf

Egis Technology

Eli Lilly and Company

EQ Bank

Fidelity

Finastra

Genetec

HCA Healthcare

Honeywell

HUMAN Security

Imperva

Inspur Software

Intralinks

iPipeline

Johnson & Johnson

Landis+Gyr

Lenovo

MassMutual

MediaTek

Medtronic

MiTAC

Navient

Navy Federal Credit Union

NEC

NetApp

Oppo

Pegasystems

Principal Financial

QlikTech International AB

Realtek

Reckitt

Sammons Financial

ServiceNow

Signify

SonicWall

Synchrony Financial

TD Ameritrade

Teradata

Trainline

U.S. Bank

Unisoc

Vanguard

Veritas

Verizon Media

Vivo

World Wide Technology

ZoomInfo

19

PART 4:
QUICK GUIDE
TO SSI MATURITY

20

QUICK GUIDE TO SSI MATURITY

Twelve questions can help clarify where your SSI is today.
Combined with a detailed software security scorecard
(see below on how to measure your own program) and
knowledge about roles and responsibilities, you can use
this information to plan strategic changes for ongoing
success.

SSI maturity is a complex thing. Each organization will apply different
values to efforts and progress in people, process, technology, and
culture. They will also evolve differently in their vision for success as
well as how they spend resources, grow the program, and manage
risk. This section provides an approach to organizing, growing, and
maturing an SSI that works for everyone. Refer to Appendix B for
more details.

A BASELINE FOR SSI LEADERS
All program leaders require a detailed understanding of their efforts
and whether those efforts align with business objectives. A good
start here is to understand whether organizational SSI efforts align
well with changes in the software security landscape driven by global
events, digital transformation, and engineering evolution, as well as
with how software is made today. Use your answers to the questions
below to determine whether it’s time to invest in new growth. If you
don’t know all these answers, use the list to gather information from
each SSI stakeholder responsible for aspects of software security
risk management in your organization.

Is Your SSI Keeping Pace with Change in Your
Software Portfolio?
•	 Do you maintain at least a near-current view of all your software

and development assets, including internal code, third-party
code, open source, development environments and toolchains,
infrastructure-as-code, and other software assets?

•	 Are you creating and using in your risk management processes
SBOMs that detail all the components in the SSI’s software
portfolio?

•	 Do you have a near-real-time view of your operations
environments, along with a view into their aggregate attack
surface and aggregate risk?

Are You Creating the DevSecOps Culture You
Need?
•	 Are you building bridges between the various software security

stakeholders in your organization—governance, technical, audit,
vendor management, cloud, etc.—to align culture, approach,
technology stacks, and testing strategies?

•	 Have you scaled your security champions program across
your software portfolio, including skills specific to automation,
technology stacks, application architectures, cloud-native
development, and other important DevOps needs?

•	 Are you delivering important security policy, standards, and
guidelines as-code that run in engineering and operations
toolchains?

Are You Shifting Security Efforts Everywhere in
the Engineering Lifecycle?
•	 Are you automating security decisions to remove time-consuming

manual review and moving toward a secure, auditable,
governance-as-code-driven SDLC?

•	 Are you following a shift everywhere strategy to move from large,
time-consuming security tests to smaller, faster, timelier, pipeline-
driven security tests conducted to improve engineering team
performance?

•	 Are you managing supply chain risk through vendor software
assurance, governance-driven access and usage controls,
maintenance standards, and collected provenance data?

How Does Your SSI Measure Up?
•	 Do you routinely use telemetry from security testing, operations

events, risk management processes, event postmortems, and
other efforts to drive process and automation improvements
in your DevOps toolchain or governance improvements in your
policies and standards?

•	 Does your SSI strategy include security efforts needed specifically
for modern technologies, such as cloud, container, orchestration,
open source management, development pipeline, etc.?

•	 Are you actively experimenting with new technologies, such as AI
and large language models (LLMs),, that have the opportunity to
integrate security and engineering functions while also reducing
engineering friction?

Most organizations have already covered the basics of software
security policy, testing, and outreach. It takes a concerted effort
to scale an SSI to address changes in portfolio size, technology,
infrastructure, regulation, laws, attackers, attacks, and more. Internal
review of efforts vs. needs is always a good way to move forward.

USING A BSIMM SCORECARD TO MAKE
PROGRESS
A BSIMM scorecard is a management tool that allows your SSI and
SSG leadership to:

•	 Assess your level of maturity so you can evolve your software
security journey in stages, first building a strong emerging
foundation, then scaling and maturing the more complex
activities over time.

•	 Communicate your software security posture to customers,
partners, executives, and regulators. A scorecard helps everyone
understand where you are and where you want to go in your
journey when you’re explaining your strategic plan and budgets.

•	 See actual measurement data from the field. This helps in building
a long-term plan for an SSI and in tracking progress against that
plan.

In addition to being a lens on the state of software security, the
BSIMM serves as a measuring stick to determine where your SSI
currently stands relative to the participants, whether as a whole
or for specific verticals. A direct comparison of your efforts to the
BSIMM14 scorecard for the entire data pool (see Appendix D) is
probably the best first step. Follow the steps below to use the BSIMM
to create your own SSI scorecard (see Figure 3 for an example).

21

Understand Your Organizational Mandate
•	 Decide what the SSI is expected to accomplish. Who are the

executive sponsors, and what resources are they expected to
provide? From a RACI perspective, who are the responsible and
accountable stakeholders? What metrics must be provided to
executive management to demonstrate acceptable progress?

•	 Set the proper scope for the SSI. At a high level, describe the
applicable software portfolio and the associated software
ownership (e.g., risk managers). Ensure that you include all
applications and related software in the SSG’s remit.

Build the Scorecard
•	 Make a list of stakeholders to interview. No single person

knows everything about a modern SSI, so ensure that you have
broad coverage across the SSG, satellite (security champions),
engineering, QA, operations, and security testing. As needed,
extend the stakeholder list to include teams from reliability, cloud,
privacy, training, infrastructure, resilience, AI/ML, and others
whose efforts have a direct impact on software security.

•	 Understand the BSIMM. Review the BSIMM activities and gain
an understanding of the practices, the individual activities, and
the connected themes that run through them. For example, the
activities for software security testing appear across multiple
BSIMM practices.

•	 Interview everyone and consolidate the results. Keep interviews
brief and focused on the intersection of the interviewee’s role
and specific BSIMM activities. Ensure that you get the data and
artifacts that demonstrate the organization is sufficiently—in both
depth and breadth—performing each activity before you award
credit.

•	 Create your scorecard. Use a binary 1 or 0, a scale of low,
medium, and high, or even a graduated scale such as a
percentage to combine aspects of depth, breadth, and maturity.

Make a Strategic Plan and Execute
•	 Compare your scorecard first to your stakeholders’ realistic

expectations and then also to what’s common in the data pool.
Prioritize effort on the important gaps as well as those gaps with
a long lead time. See Appendix B for more details on how to build
an execution plan. Mark your calendar to revisit the scorecard
in 12 to 18 months, document your progress, and create a new
scorecard.

•	 Define and use metrics to gauge progress. Every program needs
a barometer for success, and each organization finds different
things to be the best indicators for them. Whether described as
metrics, KPIs, KRIs, SLOs, or something else, use what works
best for you, your executive team, and your Board (with each likely
needing different metrics).

For most organizations, a single aggregated scorecard covering
the entire SSI will suffice to inform future planning. In some cases,
however, it will be beneficial to create individual scorecards for the
SSG and for business units or application teams that have varying
software security approaches or maturity levels.

Figure 3 depicts an example firm that performs 41 BSIMM14
activities (noted as 1s in its EXAMPLEFIRM scorecard columns,
e.g., SM1.1), including nine activities that are the most common
in their respective practices (orange, e.g., CP1.2). Note the firm
does not perform the most observed activities in the other three
practices (gray boxes, e.g., SM1.4) and should take some time to
determine whether these are necessary or useful to its overall SSI.
The BSIMM14 FIRMS columns show the number of observations
(currently out of 130) for each activity, allowing the firm to
understand the activity’s general popularity within the current data
pool. If you want to evaluate your scorecard against a particular
vertical, refer to Appendix E.

Once you have determined where you stand with activity efforts
compared to your expectations, you can devise a plan for
improvement. Organizations almost always choose some hybrid of
expanding their SSI with new activities and scaling some existing
activities across more of the software portfolio and stakeholder
teams.

Note that there’s no inherent reason to adopt all activities in each
practice. Prioritize the ones that make sense for your organization
today and set aside those that don’t—but revisit those choices
periodically. Once they’ve adopted an activity set, most organizations
strategically work on the depth, breadth, and cost-effectiveness (e.g.,
via automation) of each activity in accordance with their view of the
risk management efforts required in their environments for their
business objectives.

To help refine the current and future activity prioritization for your
SSI, you can go beyond the AllFirms data in Appendix D to Figure 17
and analyze how SSIs evolve with remeasurements (Appendix F) and
with age (Appendix H). You can also examine what’s different about
your vertical or verticals (Appendix E) and understand the impact of a
champions program (Appendix G) on SSIs.

22

FIGURE 3. BSIMM14 EXAMPLEFIRM SCORECARD. A scorecard helps everyone understand the software security efforts that are currently underway. It also helps
organizations make comparisons to participants and serves as a guide on where to focus next.

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM14

FIRMS
(OUT OF 130)

EXAMPLE
FIRM ACTIVITY

BSIMM14
FIRMS

(OUT OF 130)

EXAMPLE
FIRM ACTIVITY

BSIMM14
FIRMS

(OUT OF 130)

EXAMPLE
FIRM ACTIVITY

BSIMM14
FIRMS

(OUT OF 130)

EXAMPLE
FIRM

STRATEGY & METRICS ATTACK MODELS ARCHITECTURE ANALYSIS PENETRATION TESTING
[SM1.1] 101 1 [AM1.2] 73 [AA1.1] 108 1 [PT1.1] 114

[SM1.3] 80 [AM1.3] 49 1 [AA1.2] 59 1 [PT1.2] 102 1

[SM1.4] 118 [AM1.5] 81 [AA1.4] 63 [PT1.3] 85 1

[SM2.1] 73 [AM2.1] 16 [AA2.1] 35 [PT2.2] 42

[SM2.2] 71 [AM2.6] 16 1 [AA2.2] 34 1 [PT2.3] 55

[SM2.3] 71 [AM2.7] 15 1 [AA2.4] 40 1 [PT3.1] 30 1

[SM2.6] 77 [AM2.8] 20 [AA3.1] 20 [PT3.2] 21

[SM2.7] 62 1 [AM2.9] 16 [AA3.2] 8

[SM3.1] 32 [AM3.2] 8 [AA3.3] 17

[SM3.2] 23 [AM3.4] 13

[SM3.3] 32 [AM3.5] 11

[SM3.4] 8

[SM3.5] 0

COMPLIANCE & POLICY SECURITY FEATURES
& DESIGN CODE REVIEW SOFTWARE

ENVIRONMENT
[CP1.1] 103 1 [SFD1.1] 100 1 [CR1.2] 84 1 [SE1.1] 88

[CP1.2] 114 1 [SFD1.2] 95 1 [CR1.4] 112 1 [SE1.2] 113 1

[CP1.3] 101 1 [SFD2.1] 45 [CR1.5] 74 [SE1.3] 92 1

[CP2.1] 58 [SFD2.2] 70 [CR1.7] 55 [SE2.2] 68 1

[CP2.2] 63 [SFD3.1] 18 [CR2.6] 26 1 [SE2.4] 45

[CP2.3] 72 [SFD3.2] 22 [CR2.7] 20 [SE2.5] 63 1

[CP2.4] 62 [SFD3.3] 9 [CR2.8] 28 1 [SE2.7] 47 1

[CP2.5] 80 1 [CR3.2] 17 [SE3.2] 18

[CP3.1] 38 [CR3.3] 5 [SE3.3] 18

[CP3.2] 34 [CR3.4] 3 [SE3.6] 22

[CP3.3] 15 [CR3.5] 4 [SE3.8] 2

[SE3.9] 0

TRAINING STANDARDS &
REQUIREMENTS SECURITY TESTING CONFIG. MGMT.

& VULN. MGMT.
[T1.1] 76 1 [SR1.1] 94 1 [ST1.1] 110 1 [CMVM1.1] 117 1

[T1.7] 64 1 [SR1.2] 103 1 [ST1.3] 91 1 [CMVM1.2] 95

[T1.8] 59 [SR1.3] 98 [ST1.4] 62 [CMVM1.3] 98 1

[T2.5] 44 [SR1.5] 101 1 [ST2.4] 23 [CMVM2.1] 92

[T2.8] 27 1 [SR2.2] 75 [ST2.5] 34 [CMVM2.3] 53

[T2.9] 32 1 [SR2.5] 63 1 [ST2.6] 25 [CMVM3.1] 14

[T2.10] 26 [SR2.7] 58 [ST3.3] 16 [CMVM3.2] 24

[T2.11] 30 [SR3.2] 18 [ST3.4] 4 [CMVM3.3] 18

[T2.12] 28 [SR3.3] 19 [ST3.5] 3 [CMVM3.4] 30 1

[T3.1] 8 [SR3.4] 21 [ST3.6] 6 [CMVM3.5] 16 1

[T3.2] 14 [CMVM3.6] 3

[T3.6] 8 [CMVM3.7] 35

[CMVM3.8] 0

23

ROLES IN A SOFTWARE SECURITY
INITIATIVE
Determining the right activities to focus on and clarifying who is
responsible for their implementation are important parts of making
any SSI work. That means putting people in leadership roles and
giving them clear responsibilities and objectives.

From our work with 273 BSIMM participants since 2008, we’ve
observed the following software security roles and responsibilities
being important across a wide variety of organizations of different
sizes, in different verticals, and with both large and small remits (e.g.,
application portfolio size):

•	 Executive leadership. As an SSI takes shape and requires
dedicated resources, it also requires an executive sponsor to
own the initiative, define objectives, provide budget and people,
and ensure progress. Executive leadership must help translate
business objectives into security objectives in one direction and
help translate security data into risk data in the other.

•	 SSG. An SSI looking to grow needs an SSG dedicated to scaling
the program across the organization. The SSG leader and their
team must execute on the security objectives across an array
of stakeholders, including cloud, infrastructure, development,
tooling, QA, and operations. This will require starting and maturing
software capabilities such as defect discovery and management,
software supply chain security, training, and telemetry and
metrics.

•	 Security champions (satellite). Very few SSGs can become
large enough to do their business-as-usual tasks and also be
responsive to all stakeholders all the time. A security champions
group is an effective way to scale SSG reach by embedding
trained experts in stakeholder business processes. Security
champions take on tasks such as running security tools and
doing testing results triage, on-demand training, research on
complicated security issues, and ensuring that software security
checkpoints are passed successfully.

•	 Architects and developers. Even the best policy and process
can’t guarantee secure software. People (and AI!) designing
and coding software must practice good security engineering,
follow designated procedures for responding to discovered
security issues, and collaborate actively with other stakeholders.
Architects and developers are often a source of innovation in
security integration and as-code improvements, so it’s important
to share these ideas broadly.

•	 QA teams. Code functionality is obviously critical to
organizational success, but getting QA teams to include security
tests in their automated suites provides an easy way to expand
the search for security defects. QA teams can also be a source
of innovation for automating security tests in preproduction
environments. Product management teams that create non-
functional security requirements (NFSRs) greatly improve the
ability of QA teams to create security tests.

•	 Operations and administration. Even the most secure code
can be undermined by poor host, network, cloud, or other
configurations and administration. Operations teams have an
opportunity to ensure that configurations, administration, access
controls, logging, monitoring, and as-code efforts support
software security objectives.

•	 GRC, legal, and data privacy. Specialists can help ensure that
regulations, laws, contracts, and client expectations are translated
into mandatory program, software, and process security
requirements.

•	 Procurement and vendor management. Holistic software
security means securing software from vendors and other
sources. Dedicated security-aware vendor management and
procurement stakeholders have a key role to play in supporting
the organization’s software supply chain risk management
strategy and SSI. Software procurement and vendor managers
can help facilitate assurance interactions, including security
assessments of vendors, to ensure that acquired and supplied
software aligns with organizational security objectives and SSI
requirements.

Refer to Appendix A for more details on roles and responsibilities.

Determining the right activities
to focus on and clarifying who is
responsible for their implementation
are important parts of making any
SSI work.

24

PART 5:
THE BSIMM
FRAMEWORK

25

THE BSIMM FRAMEWORK

Most of the BSIMM will likely fit perfectly for your
SSI, but some parts might feel a little less applicable.
Understanding the model allows you to both learn from
others and ensure that your program is right for your
organization.

We built the first version of the BSIMM nearly 15 years ago (late
2008) as follows:

•	 We relied on our own knowledge of software security practices to
create the initial SSF.

•	 We conducted a series of in-person interviews with nine
executives in charge of SSIs. From these interviews, we identified
a set of 110 software security activities that we organized
according to the SSF.

•	 We then created scorecards for each of the nine initiatives that
showed which of the activities each initiative carried out. To
validate our work, we asked each participating firm to review
the SSF, practices, activities, and the scorecard we created for
their initiative, making the necessary adjustments based on their
feedback.

Today, we continue to do BSIMM assessments with in-person
interviews whenever possible, which we’ve done with a total of
273 firms so far. In addition, we’ve conducted assessments for 18
organizations that have rejoined the participant group after aging out.
In 44 cases, we assessed both the SSG and one or more business
units as part of creating an aggregated SSI view for a firm. We evolve
the model by digging for new kinds of efforts during assessments,

both as new participants join and as current participants are
remeasured, then by adding new activities when warranted; we’ve
added 17 since 2008. We also adjust the positioning of activities in
the model practices according to their observation rates.

CORE KNOWLEDGE
The BSIMM core knowledge encompasses the activities we have
directly observed in BSIMM participants. We organize that core
knowledge into an SSF, represented in Figure 4, that is organized
into four domains—Governance, Intelligence, SSDL Touchpoints,
and Deployment—with those domains containing the 126 BSIMM14
activities.

From an executive perspective, you can view BSIMM activities as
controls implemented in a software security risk management
framework. The implemented activities might function as preventive,
detective, corrective, or compensating controls in your SSI.
Positioning the activities as controls allows for easier understanding
of the BSIMM’s value by governance, risk, compliance, legal, audit,
and other risk management groups.

We divide activities into levels per practice based on the frequency
with which they’re observed in the participants. Doing this helps
organizations quickly understand whether the activity they’re
contemplating is common or uncommon across other organizations.
Level 1 activities (often straightforward and universally applicable)
are those that are most observed across the data pool of 130
firms, level 2 (often more difficult to implement and requiring more
coordination) are less frequently observed, and level 3 activities
(usually more difficult to implement and not always applicable) are
more rarely observed. Note that new activities are added at level 3
because we don’t yet know how common they are, so they start with
zero observations.

DOMAINS

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

Practices that help organize,
manage, and measure a software
security initiative. Staff development
is also a central governance practice.

Practices that result in collections
of corporate knowledge used in
carrying out software security
activities throughout the
organization. Collections include
both proactive security guidance and
organizational threat modeling.

Practices associated with analysis
and assurance of particular
software development artifacts and
processes. All software security
methodologies include these
practices.

Practices that interface with
traditional network security and
software maintenance organizations.
Software configuration, maintenance,
and other environment issues have
direct impact on software security.

PRACTICES

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

1.	 Strategy & Metrics (SM)

2.	 Compliance & Policy (CP)

3.	 Training (T)

4.	 Attack Models (AM)

5.	 Security Features & Design (SFD)

6.	 Standards & Requirements (SR)

7.	 Architecture Analysis (AA)

8.	 Code Review (CR)

9.	 Security Testing (ST)

10.	Penetration Testing (PT)

11.	Software Environment (SE)

12.	Configuration Management
& Vulnerability Management
(CMVM)

FIGURE 4. THE SOFTWARE SECURITY FRAMEWORK. Twelve practices align with the four high-level domains and contain the 126 BSIMM14 activities.

26

UNDERSTANDING THE MODEL
A domain, such as Governance, contains practices, such as Strategy
& Metrics, each of which contains activities that each have a detailed
description. Creating a scorecard (e.g., activity SM1.1 was observed
and is marked with a “1”) informs decisions about strategic change.

GOVERNANCE

1.	 Strategy & Metrics (SM)

2.	 Compliance & Policy (CP)

3.	 Training (T)

GOVERNANCE

STRATEGY & METRICS
[SM1.1] Publish process and evolve as necessary. [SM2.7] Create evangelism role and perform internal marketing.

[SM1.3] Educate executives on software security. [SM3.1] Use a software asset tracking application with portfolio view.

[SM1.4] Implement security checkpoints and associated governance. [SM3.2] Make SSI efforts part of external marketing.

[SM2.1] Publish data about software security internally and use it to
drive change. [SM3.3] Identify metrics and use them to drive resourcing.

[SM2.2] Enforce security checkpoints and track exceptions. [SM3.4] Integrate software-defined lifecycle governance.

[SM2.3] Create or grow a satellite (security champions). [SM3.5] Integrate software supply chain risk management.

[SM2.6] Require security sign-off prior to software release.

GOVERNANCE

ACTIVITY BSIMM14 FIRMS
(OUT OF 130) EXAMPLE FIRM

STRATEGY & METRICS
[SM1.1] 101 1

[SM1.3] 80

[SM1.4] 118

[SM2.1] 73

[SM2.2] 71

[SM2.3] 71

[SM2.6] 77

[SM2.7] 62 1

[SM3.1] 32

[SM3.2] 23

[SM3.3] 32

[SM3.4] 8

[SM3.5] 0

[SM2.7: 62]
Create evangelism role and perform internal marketing.

Build support for software security throughout the organization via
ongoing evangelism and ensure that everyone aligns on security
objectives. This internal marketing function, often performed by a
variety of stakeholder roles, keeps executives and others up to date
on the magnitude of the software security problem and the elements
of its solution. A champion or a scrum master familiar with security,
for example, could help teams adopt better software security
practices as they transform to Agile and DevOps methods. Similarly,
a cloud expert could demonstrate the changes needed in security
architecture and testing for serverless applications. Evangelists can
increase understanding and build credibility by giving talks to internal
groups (including executives), publishing roadmaps, authoring
technical papers for internal consumption, or creating a collection
of papers, books, and other resources on an internal website (see
[SR1.2]) and promoting its use. In turn, organizational feedback
becomes a useful source of improvement ideas.

27

PART 6:
THE BSIMM
ACTIVITIES

28

GOVERNANCE

Governance: Strategy & Metrics (SM)
The Strategy & Metrics practice encompasses planning, assigning
roles and responsibilities, identifying software security goals,
determining budgets, and identifying metrics and software release
conditions.

[SM1.1: 101] Publish process and evolve as necessary.
The process for addressing software security is defined, published
internally, and broadcast to all stakeholders so that everyone knows
the plan. Goals, roles, responsibilities, and activities are explicitly
defined. Most organizations examine existing methodologies, such
as the NIST SSDF, Microsoft SDL, or Synopsys Touchpoints, then
tailor them to meet their needs. Security activities will be adapted to
software lifecycle processes (e.g., waterfall, Agile, CI/CD, DevOps),
so activities will evolve with both the organization and the security
landscape. The process doesn’t need to be publicly promoted outside
the firm to have the desired impact (see [SM3.2]). In addition to
publishing the written process, some firms also automate parts (e.g.,
a testing strategy) as governance-as-code (see [SM3.4]).

[SM1.3: 80] Educate executives on software security.
Executives are regularly shown the ways malicious actors attack
software and the negative business impacts those attacks can
have on the organization. Go beyond reporting of open and closed
defects to educate executives on the business risks, including risks
of adopting emerging engineering technologies and methodologies
without security oversight. Demonstrate a worst-case scenario in
a controlled environment with the permission of all involved (e.g.,
by showing attacks and their business impact). Presentation to the
Board can help garner resources for new or ongoing SSI efforts.
Demonstrating the need for new skill-building training in evolving
areas, such as DevOps groups using cloud-native technologies, can
help convince leadership to accept SSG recommendations when
they might otherwise be ignored in favor of faster release dates or
other priorities. Bring in an outside expert when necessary to bolster
executive attention.

[SM1.4: 118] Implement security checkpoints and
associated governance.

The software security process includes checkpoints (such as gates,
release conditions, guardrails, milestones, etc.) at one or more
points in a software lifecycle. The first two steps toward establishing
security-specific checkpoint conditions are to identify process
locations that are compatible with existing development practices
and to then begin gathering the information necessary, such as
risk-ranking thresholds or defect data, to make a go/no-go decision.
Importantly, the conditions need not be enforced at this stage—e.g.,
the SSG can collect security testing results for each project prior
to release, then provide an informed opinion on what constitutes
sufficient testing or acceptable test results without trying to stop a
project from moving forward (see [SM2.2]). Shorter release cycles
might require creative approaches to collecting the right evidence
and rely heavily on automation. Socializing the conditions and then
enforcing them once most project teams already know how to
succeed is a gradual approach that motivates good behavior without
introducing unnecessary friction.

THE BSIMM ACTIVITIES

The BSIMM activities are the individual controls used
to construct or improve an SSI. They range through
people, process, technology, and culture. You can use
this information to choose which controls to apply within
your initiative, then align your implementation strategy
and metrics with your desired outcomes.

The BSIMM framework comprises four domains—Governance,
Intelligence, SSDL Touchpoints, Deployment—and those domains
contain 12 practices, such as Strategy & Metrics, Attack Models,
and Code Review, which each contain activities. These activities are
the BSIMM building blocks, the smallest unit of software security
granularity implemented to build SSIs. Rather than prescriptively
dictating a set of best practices, the BSIMM descriptively observes,
quantifies, and documents the actual activities carried out by various
kinds of SSIs across diverse organizations.

ACTIVITIES IN THE BSIMM
The BSIMM is a data-driven model that evolves over time. Over the
years, we have added, deleted, and adjusted the levels of various
activities based on the data observed throughout the BSIMM’s
evolution. When considering whether to add a new activity, we
analyze whether the effort we’re observing is truly new to the model
or simply a variation on an existing activity. Similarly, for deciding
whether to move an activity between levels within a practice, we use
the results of an intra-level standard deviation analysis and the trend
in observation counts.

Each activity has a unique label and name—e.g., activity SM1.4 is
in the Strategy & Metrics practice and is named Implement security
checkpoints and associated governance. To preserve backward
compatibility, we make all changes by adding new activity labels to
the model, even when an activity has simply changed levels within
a practice (as an example, we would add a new CR#.# label for both
new and moved activities in the Code Review practice).

BSIMM activity levels distinguish the frequency with which activities
are observed in the participating organizations. As seen in Part
5, frequently observed activities are designated level 1, with less
frequent and infrequently observed activities designated as levels 2
and 3, respectively. Using SM1.4 as an example again, we see that
it is a frequently observed activity in the Strategy & Metrics practice.
Note that the new activities we add to the model start with zero
observations and are therefore always added at level 3.

Top 10 Activity
in BSIMM14

New Activity
in BSIMM14

29

[SM2.1: 73] Publish data about software security internally
and use it to drive change.
To facilitate improvement, data is published internally about the state
of software security within the organization. Produce security or
development dashboards with metrics for executives and software
development management. Dashboards can be part of pipeline
toolchains to enable developer self-improvement. Sometimes, this
published data won’t be shared with everyone in the firm but only
with the stakeholders who are tasked to drive change. In other cases,
open book management and data published to all stakeholders helps
everyone know what’s going on. If the organization’s culture promotes
internal competition between groups, use this information to add
a security dimension. Integrate automated security telemetry to
gather measurements quickly and accurately to increase timeliness
of security data in areas such as speed (e.g., time to fix) and quality
(e.g., defect density). Publishing data about new technologies (e.g.,
security and risk in cloud-native architectures) is important for
identifying needed improvements.

[SM2.2: 71] Enforce security checkpoints and track
exceptions.
Enforce security release conditions at each checkpoint (gate,
guardrail, milestone, etc.) for every project, so that each project must
either meet an established measure or follow a defined process for
obtaining an exception to move forward. Use internal policies and
standards, regulations, contractual agreements, and other obligations
to define release conditions, then track all exceptions. Verifying
conditions yields data that informs the KRIs and any other metrics
used to govern the process. Automatically giving software a passing
grade or granting exceptions without due consideration defeats
the purpose of verifying conditions. Even seemingly innocuous
software projects (e.g., small code changes, infrastructure access
control changes, deployment blueprints) must successfully satisfy
the prescribed security conditions as they progress through the
software lifecycle. Similarly, APIs, frameworks, libraries, bespoke
code, microservices, container configurations, etc. are all software
that must satisfy security release conditions. It’s possible, and often
very useful, to have verified the conditions both before and after the
development process itself. In modern development environments,
the verification process will increasingly become automated (see
[SM3.4]).

[SM2.3: 71] Create or grow a satellite (security champions).
Form a collection of people scattered across the organization—a
satellite—who show an above-average level of security interest or
skill and who contribute software security expertise to development,
QA, and operations teams. Forming this social network of advocates,
sometimes referred to as champions, is a good step toward scaling
security into software engineering. One way to build the initial group
is to track the people who stand out during introductory training
courses (see [T3.6]). Another way is to ask for volunteers. In a more
top-down approach, initial satellite membership is assigned to ensure
good coverage of development groups, but ongoing membership is
based on actual performance. The satellite can act as a sounding
board for new projects and, in new or fast-moving technology areas,
can help combine software security skills with domain knowledge
that might be under-represented in the SSG or engineering teams.
Agile coaches, scrum masters, and DevOps engineers can make
particularly useful satellite members, especially for detecting and
removing process friction. In some environments, satellite-led efforts
are delivered via automation (e.g., as-code).

[SM2.6: 77] Require security sign-off prior to software
release.
The organization has an initiative-wide process for documenting
accountability and accepting security risk by having a risk owner use
SSG-approved criteria to sign off on the state of all software prior
to release. The sign-off policy might also require the accountable
person to, e.g., acknowledge critical vulnerabilities that have not
been mitigated or SSDL steps that have been skipped. Informal or
uninformed risk acceptance alone isn’t a security sign-off because
the act of accepting risk is more effective when it’s formalized
(e.g., with a signature, a form submission, or something similar)
and captured for future reference. Similarly, simply stating that
certain projects don’t need sign-off at all won’t achieve the desired
risk management results. In some cases, however, the risk owner
can provide the sign-off on a particular set of software project
acceptance criteria, which are then implemented in automation
to provide governance-as-code (see [SM3.4]), but there must be
an ongoing verification that the criteria remain accurate and the
automation is working.

[SM2.7: 62] Create evangelism role and perform internal
marketing.
Build support for software security throughout the organization via
ongoing evangelism and ensure that everyone aligns on security
objectives. This internal marketing function, often performed by a
variety of stakeholder roles, keeps executives and others up to date
on the magnitude of the software security problem and the elements
of its solution. A champion or a scrum master familiar with security,
for example, could help teams adopt better software security
practices as they transform to Agile and DevOps methods. Similarly,
a cloud expert could demonstrate the changes needed in security
architecture and testing for serverless applications. Evangelists can
increase understanding and build credibility by giving talks to internal
groups (including executives), publishing roadmaps, authoring
technical papers for internal consumption, or creating a collection
of papers, books, and other resources on an internal website (see
[SR1.2]) and promoting its use. In turn, organizational feedback
becomes a useful source of improvement ideas.

30

[SM3.1: 32] Use a software asset tracking application with
portfolio view.
The SSG uses centralized tracking automation to chart the progress
of every piece of software and deployable artifact from creation to
decommissioning, regardless of development methodology. The
automation records the security activities scheduled, in progress, and
completed, incorporating results from SSDL activities even when they
happen in a tight loop or during deployment. The combined inventory
and security posture view enables timely decision-making. The SSG
uses the automation to generate portfolio reports for multiple metrics
and, in many cases, publishes this data at least among executives. As
an initiative matures and activities become more distributed, the SSG
uses the centralized reporting system to keep track of all the moving
parts.

[SM3.2: 23] Make SSI efforts part of external marketing.
To build external awareness, the SSG helps market the SSI beyond
internal teams. The process of sharing details externally and
inviting critique is used to bring new perspectives into the firm.
Promoting the SSDL externally can turn security efforts into a market
differentiator, and feedback from external marketing can grow an
SSI’s risk reduction exercises into a competitive advantage. The SSG
might provide details at external conferences or trade shows. In
some cases, a complete SSDL methodology can be published and
promoted outside the firm, and governance-as-code concepts can
make interesting case studies.

[SM3.3: 32] Identify metrics and use them to drive
resourcing.
The SSG and its management identify metrics that define and
measure SSI progress in quantitative terms. These metrics are
reviewed on a regular basis and drive the initiative’s budgeting
and resource allocations, so simple counts and out-of-context
measurements won’t suffice here. On the technical side, one such
metric could be defect density, a reduction of which could be used
to show a decreasing cost of remediation over time, assuming, of
course, that testing depth has kept pace with software changes.
Data for metrics is best collected early and often using event-driven
processes with telemetry rather than relying on calendar-driven data
collection. The key is to tie security results to business objectives in a
clear and obvious fashion to justify resourcing. Because the concept
of security is already tenuous to many businesspeople, make the
tie-in explicit.

[SM3.4: 8] Integrate software-defined lifecycle governance.
Organizations begin replacing traditional document-, presentation-,
and spreadsheet-based lifecycle management with software-based
delivery platforms. For some software lifecycle phases, humans
are no longer the primary drivers of progression from one phase
to the next. Instead, organizations rely on automation to drive the
management and delivery process with software such as Spinnaker
or GitHub, and humans participate asynchronously (and often
optionally). Automation often extends beyond the scope of CI/
CD to include functional and nonfunctional aspects of delivery,
such as health checks, cut-over on failure, rollback to known-good
state, defect discovery and management, compliance verification,
and a way to ensure adherence to policies and standards. Some
organizations are also evolving their lifecycle management approach
by integrating their compliance and defect discovery data, perhaps
augmented by intelligence feeds and other external data, to begin
moving from a series of point-in-time go/no-go decisions (e.g.,
release conditions) to a future state of continuous accumulation of
assurance data (see [CMVM3.6]).

[SM3.5: 0] Integrate software supply chain risk
management.
Organizational risk management processes ensure that important
software created by and entering the organization is managed
through policy-driven access and usage controls, maintenance
standards (see [SE3.9]), and captured software provenance data (see
[SE2.4]). Apply these processes to external (see [SR2.7]), bespoke,
and internally developed software (see [SE3.9]) to help ensure that
deployed code has the expected components (see [SE3.8]). The
lifecycle management for all software, from creation or importation
through secure deployment, ensures that all access, usage, and
modifications are done in accordance with policy. This assurance is
easier to implement at scale using automation in software lifecycle
processes (see [SM3.4]).

Governance: Compliance & Policy (CP)
The Compliance & Policy practice is focused on identifying controls
for compliance regimens such as PCI DSS and GDPR, developing
contractual controls such as SLAs to help manage COTS risk, setting
organizational software security policy, and auditing against that
policy.

[CP1.1: 103] Unify regulatory pressures.
Have a cross-functional team that understands the

constraints imposed on software security by regulatory or
compliance drivers that are applicable to the organization and its
customers. The team takes a common approach that removes
redundancy and conflicts to unify compliance requirements, such
as from PCI security standards; GLBA, SOX, and HIPAA in the US; or
GDPR in the EU. A formal approach will map applicable portions of
regulations to controls (see [CP2.3]) applied to software to explain
how the organization complies. Existing business processes run by
legal, product management, or other risk and compliance groups
outside the SSG could serve as the regulatory focal point, with the
SSG providing software security knowledge. A unified set of software
security guidance for meeting regulatory pressures ensures that
compliance work is completed as efficiently as possible.

31

[CP1.2: 114] Identify privacy obligations.
The SSG identifies privacy obligations stemming from

regulation and customer expectations, then translates these
obligations into both software requirements and privacy best
practices. The way software handles PII might be explicitly regulated,
but even if it isn’t, privacy is an important topic. For example, if the
organization processes credit card transactions, the SSG will help
in identifying the privacy constraints that the PCI DSS places on the
handling of cardholder data and will inform all stakeholders (see
[SR1.3]). Note that outsourcing to hosted environments (e.g., the
cloud) doesn’t relax privacy obligations and can even increase the
difficulty of recognizing and meeting all associated needs. Also, note
that firms creating software products that process PII when deployed
in customer environments might meet this need by providing privacy
controls and guidance for their customers. Evolving consumer
privacy expectations, the proliferation of “software is in everything,”
and data scraping and correlation (e.g., social media) add additional
expectations and complexities for PII protection.

[CP1.3: 101] Create policy.
The SSG guides the organization by creating or contributing to
software security policies that satisfy internal, regulatory, and
customer-driven security requirements. This policy is what is
permitted and denied at the initiative level—if it’s not mandatory
and enforced, it’s not policy. The policies include a unified approach
for satisfying the (potentially lengthy) list of security drivers at the
governance level so that project teams can avoid keeping up with the
details involved in complying with all applicable regulations or other
mandates. Likewise, project teams won’t need to relearn customer
security requirements on their own. Architecture standards and
coding guidelines aren’t examples of policy, but policy that prescribes
and mandates their use for certain software categories falls under
this umbrella. In many cases, policy statements are translated into
automation to provide governance-as-code. Even if not enforced by
humans, policy that’s been automated must still be mandatory. In
some cases, policy will be documented exclusively as governance-
as-code (see [SM3.4]), often as tool configuration, but it must still be
readily readable, auditable, and editable by humans.

[CP2.1: 58] Build a PII inventory.
The organization identifies and tracks the kinds of PII processed
or stored by each of its systems, along with their associated data
repositories. In general, simply noting which applications process
PII isn’t enough—the type of PII (e.g., PHI, PFI, PI) and where it’s
stored are necessary so that the inventory can be easily referenced
in critical situations. This usually includes making a list of databases
that would require customer notification if breached or a list to use
in crisis simulations (see [CMVM3.3]). Build the PII inventory by
starting with each individual application and noting its PII use or by
starting with PII types and noting the applications that touch each
one. System architectures have evolved such that PII will often flow
into cloud-based service and endpoint device ecosystems, then come
to rest there (e.g., content delivery networks, workflow systems,
mobile devices, IoT devices), making it tricky to keep an accurate PII
inventory.

[CP2.2: 63] Require security sign-off for compliance-related
risk.
The organization has a formal compliance risk acceptance sign-off
and accountability process that addresses all software development
projects. In this process, the SSG acts as an advisor while the risk
owner signs off on the software’s compliance state prior to release
based on its adherence to documented criteria. The sign-off policy
might also require the head of the business unit to, e.g., acknowledge
compliance issues that haven’t been mitigated or compliance-related
SSDL steps that have been skipped, but sign-off is required even
when no compliance-related risk is present. Sign-off is explicit and
captured for future reference, with any exceptions tracked, even
in automated application lifecycle methodologies. Note that an
application without security defects might still be noncompliant, so
clean security testing results are not a substitute for a compliance
sign-off. Even in DevOps organizations where engineers have
the technical ability to release software, there is still a need for a
deliberate risk acceptance step even if the compliance criteria are
embedded in automation (see [SM3.4]). In cases where the risk
owner signs off on a particular set of compliance acceptance criteria
that are then implemented in automation to provide governance-
as-code, there must be ongoing verification that the criteria remain
accurate and the automation is actually working.

[CP2.3: 72] Implement and track controls for compliance.
The organization can demonstrate compliance with applicable
requirements because its SSDL is aligned with the control statements
that were developed by the SSG in collaboration with compliance
stakeholders (see [CP1.1]). The SSG collaborates with stakeholders to
track controls, navigate problem areas, and ensure that auditors and
regulators are satisfied. The SSG can then remain in the background
when the act of following the SSDL automatically generates the
desired compliance evidence predictably and reliably. Increasingly,
the DevOps approach embeds compliance controls in automation,
such as in software-defined infrastructure and networks, rather than
in human process and manual intervention. A firm doing this properly
can explicitly associate satisfying its compliance concerns with
following its SSDL.

[CP2.4: 62] Include software security SLAs in all vendor
contracts.
Software vendor contracts include an SLA to ensure that the vendor’s
security efforts align with the organization’s security and compliance
story. Each new or renewed contract contains provisions requiring the
vendor to address software security and deliver a product or service
compatible with the organization’s security policy. In some cases,
open source licensing concerns initiate the vendor management
process, which can open the door for additional software security
language in the SLA (see [SR2.5]). Typical provisions set requirements
for policy conformance, incident management, training, defect
management, and response times for addressing software security
issues. Traditional IT security requirements and a simple agreement
to allow penetration testing or another defect discovery method aren’t
sufficient here.

32

[CP2.5: 80] Ensure executive awareness of compliance and
privacy obligations.
Gain buy-in around compliance and privacy obligations by
providing executives with plain-language explanations of both
the organization’s compliance and privacy requirements and the
potential consequences of failing to meet those requirements. For
some organizations, explaining the direct cost and likely fallout
from a compliance failure or data breach can be an effective way to
broach the subject. For others, having an outside expert address the
Board works because some executives value an outside perspective
more than an internal one. A sure sign of proper executive buy-in is
an acknowledgment of the need along with adequate allocation of
resources to meet those obligations. Use the sense of urgency that
typically follows a compliance or privacy failure to build additional
awareness and bootstrap new efforts.

[CP3.1: 38] Document a software compliance story.
The SSG can demonstrate the organization’s up-to-date software
security compliance story on demand. A compliance story is a
collection of data, artifacts, policy controls, or other documentation
that shows the compliance state of the organization’s software and
processes. Often, senior management, auditors, and regulators—
whether government or other—will be satisfied with the same kinds
of reports that can be generated directly from various tools. In some
cases, particularly where organizations leverage shared responsibility
through cloud services, the organization will require additional
information from vendors about how that vendor’s controls support
organizational compliance needs. It will often be necessary to
normalize information that comes from disparate sources.

[CP3.2: 34] Ensure compatible vendor policies.
Ensure that vendor software security policies and SSDL processes
are compatible with internal policies. Vendors likely comprise a
diverse group—cloud providers, middleware providers, virtualization
providers, container and orchestration providers, bespoke software
creators, contractors, and many more—and each might be held to
different policy requirements. Policy adherence enforcement might
be through a point-in-time review (such as ensuring acceptance
criteria), automated checks (such as those applied to pull requests,
committed artifacts like containers, or similar), or convention and
protocol (such as preventing services connection unless security
settings are correct and expected certificates are present). Evidence
of vendor adherence could include results from SSDL activities, from
manual tests or tests built directly into automation or infrastructure,
or from other software lifecycle instrumentation. For some policies
or SSDL processes, vendor questionnaire responses and attestation
alone might be sufficient.

[CP3.3: 15] Drive feedback from software lifecycle data back
to policy.
Feed information from the software lifecycle into the policy creation
and maintenance process to drive improvements, such as in defect
prevention and strengthening governance-as-code practices (see
[SM3.4]). With this feedback as a routine process, blind spots can
be eliminated by mapping them to trends in SSDL failures. Events
such as the regular appearance of inadequate architecture analysis,
recurring vulnerabilities, ignored security release conditions, or the
wrong vendor choice for carrying out a penetration test can expose
policy weakness (see [CP1.3]). As an example, lifecycle data including
KPIs, OKRs, KRIs, SLIs, SLOs, or other organizational metrics can
indicate where policies impose too much bureaucracy by introducing
friction that prevents engineering from meeting the expected delivery
cadence. Rapid technology evolution might also create policy gaps
that must be addressed. Over time, policies become more practical
and easier to carry out (see [SM1.1]). Ultimately, policies are refined
with SSDL data to enhance and improve effectiveness.

Governance: Training (T)
Training has always played a critical role in software security because
organizational stakeholders across governance, risk, and compliance
(GRC), legal, engineering, operations, and other groups often start
with little security knowledge.

[T1.1: 76] Conduct software security awareness training.
To promote a culture of software security throughout the
organization, the SSG conducts periodic software security awareness
training. This training might be delivered via SSG members, security
champions, an outside firm, the internal training organization,
or e-learning, but course content isn’t necessarily tailored for a
specific audience—developers, QA engineers, and project managers
could attend the same “Introduction to Software Security” course,
for example. Augment this content with a tailored approach that
addresses the firm’s culture explicitly, which might include the
process for building security in, avoiding common mistakes,
and technology topics such as CI/CD and DevSecOps. Generic
introductory courses that only cover basic IT or high-level security
concepts don’t generate satisfactory results. Likewise, awareness
training aimed only at developers and not at other roles in the
organization is insufficient.

[T1.7: 64] Deliver on-demand individual training.
The organization lowers the burden on students and reduces the
cost of delivering software security training by offering on-demand
training for SSDL stakeholders. The most obvious choice, e-learning,
can be kept up to date through a subscription model, but an online
curriculum must be engaging and relevant to students in various
roles (e.g., developer, QA, cloud, ops) to achieve its intended purpose.
Ineffective (e.g., aged, off-topic) training or training that isn’t used
won’t create any change. Hot engineering topics like containerization
and security orchestration, and new training delivery styles such as
gamification, will attract more interest than boring policy discussions.
For developers, it’s possible to provide training directly through the
IDE right when it’s needed, but in some cases, building a new skill
(such as cloud security or threat modeling) might be better suited for
instructor-led training, which can also be provided on demand.

33

[T1.8: 59] Include security resources in onboarding.
The process for bringing new hires into a software engineering
organization requires timely completion of a training module about
software security. While the generic new hire process usually covers
topics like picking a good password and avoiding phishing, this
orientation period is enhanced to cover topics such as how to create,
deploy, and operate secure code, the SSDL, security standards (see
[SR1.1]), and internal security resources (see [SR1.2]). The objective is
to ensure that new hires contribute to the security culture as soon as
possible. Although a generic onboarding module is useful, it doesn’t
take the place of a timely and more complete introductory software
security course.

[T2.5: 44] Enhance satellite (security champions) through
training and events.
Strengthen the satellite network (see [SM2.3]) by inviting guest
speakers or holding special events about advanced software security
topics. This effort is about providing to the satellite customized
training (e.g., the latest software security techniques for DevOps or
serverless technologies or on the implications of new policies and
standards) so that it can fulfill its assigned responsibilities—it’s not
about inviting satellite members to routine brown bags or signing
them up for standard computer-based training. Similarly, a standing
conference call with voluntary attendance won’t get the desired
results, which are as much about building camaraderie as they are
about sharing knowledge and organizational efficiency. Regular
events build community and facilitate collaboration and collective
problem-solving. Face-to-face meetings are by far the most effective,
even if they happen only once or twice a year and even if some
participants must attend by videoconferencing. In teams with many
geographically dispersed and work-from-home members, simply
turning on cameras and ensuring that everyone gets a chance to
speak makes a substantial difference.

[T2.8: 27] Create and use material specific to company
history.
To make a strong and lasting change in behavior, training includes
material specific to the company’s history of software security
challenges. When participants can see themselves in a problem,
they’re more likely to understand how the material is relevant to
their work as well as when and how to apply what they’ve learned.
One way to do this is to use noteworthy attacks on the company’s
software as examples in the training curriculum. Both successful and
unsuccessful attacks, as well as notable results from penetration
tests, design review, and red team exercises, can make good
teachable moments. Stories from company history can help steer
training in the right direction but only if those stories are still relevant
and not overly censored. This training should cover platforms used
by developers (developers orchestrating containers probably won’t
care about old virtualization problems) and problems relevant to
languages in common use.

[T2.9: 32] Deliver role-specific advanced curriculum.
Software security training goes beyond building awareness (see
[T1.1]) to enabling students to incorporate security practices into their
work. This training is tailored to cover the tools, technology stacks,
development methodologies, and issues that are most relevant to
the students. An organization could offer tracks for its engineers, for
example, supplying one each for architects, developers, operations,
DevOps, site reliability engineers, and testers. Tool-specific training
is also commonly needed in such a curriculum. While it might be
more concise than engineering training, role-specific training is
also necessary for many other stakeholders within an organization,
including product management, executives, and others. In any case,
the training must be taken by a broad enough audience to build the
collective skillsets required.

[T2.10: 26] Host software security events.
The organization hosts security events featuring external speakers
and content in order to strengthen its security culture. Good
examples of such events are Intel iSecCon and AWS re:Inforce, which
invite all employees, feature external presenters, and focus on helping
engineering create, deploy, and operate better code. Employees
benefit from hearing outside perspectives, especially those related to
fast-moving technology areas with software security ramifications,
and the organization benefits from putting its security credentials
on display (see [SM3.2]). Events open only to small, select groups,
or simply putting recordings on an internal portal, won’t result in the
desired culture change across the organization.

[T2.11: 30] Require an annual refresher.
Everyone involved in the SSDL is required to take an annual
software security refresher course. This course keeps the staff
up to date on the organization’s security approach and ensures
that the organization doesn’t lose focus due to turnover, evolving
methodologies, or changing deployment models. The SSG might give
an update on the security landscape and explain changes to policies
and standards. A refresher could also be rolled out as part of a firm-
wide security day or in concert with an internal security conference.
While one refresher module can be used for multiple roles (see
[T2.9]), coverage of new topics and changes to the previous year’s
content should result in a significant amount of fresh content.

[T2.12: 28] Provide expertise via open collaboration
channels.
Software security experts offer help to anyone in an open manner
during regularly scheduled office hours or openly accessible channels
on Slack, Jira, or similar. By acting as an informal resource for people
who want to solve security problems, the SSG leverages teachable
moments and emphasizes the carrot over the stick approach to
security best practices. Office hours might be hosted one afternoon
per week by a senior SSG member, perhaps inviting briefings from
product or application groups working on hard security problems.
Slack and other messaging applications can capture questions 24x7,
functioning as an office hours platform when appropriate subject
matter experts are consistently part of the conversation and are
ensuring that the answers generated align with SSG expectations. An
online approach has the added benefit of discussions being recorded
and searchable.

34

[T3.1: 8] Reward progression through curriculum.
Progression through the security curriculum brings personal benefits,
such as public acknowledgement or career advancement. The
reward system can be formal and lead to a certification or an official
mark in the human resources system, or it can be less formal and
include motivators such as documented praise at annual review time.
Involving a corporate training department and human resources
team can make the impact of improving security skills on career
progression more obvious, but the SSG should continue to monitor
security knowledge in the firm and not cede complete control or
oversight. Coffee mugs and t-shirts can build morale, but it usually
takes the possibility of real career progression to change behavior.

[T3.2: 14] Provide training for vendors and outsourced
workers.
Vendors and outsourced workers receive appropriate software
security training, comparable to the level of training given to
employees. Spending time and effort helping suppliers get security
right at the outset is much easier than trying to determine what went
wrong later, especially if the development team has moved on to
other projects. Training individual contractors is much more natural
than training entire outsourced firms and is a reasonable place to
start. It’s important that everyone who works on the firm’s software
has an appropriate level of training that increases their capability of
meeting the software security expectations for their role, regardless
of their employment status. Of course, some vendors and outsourced
workers might have received adequate training from their own firms,
but that should always be verified.

[T3.6: 8] Identify new satellite members (security
champions) through observation.
Future satellite members (e.g., security champions) are recruited by
noting people who stand out during opportunities that show skill and
enthusiasm, such as training courses, office hours, capture-the-flag
exercises, hack-a-thons, etc. and then encouraging them to join the
satellite. Pay particular attention to practitioners who are contributing
things such as code, security configurations, or defect discovery
rules. The satellite often begins as an assigned collection of people
scattered across the organization who show an above-average level
of security interest or advanced knowledge of new technology stacks
and development methodologies (see [SM2.3]). Identifying future
members proactively is a step toward creating a social network
that speeds the adoption of security into software development and
operations. A group of enthusiastic and skilled volunteers will be
easier to lead than a group that is drafted.

INTELLIGENCE

Intelligence: Attack Models (AM)
Attack Models capture information used to think like an attacker,
including threat modeling inputs, abuse cases, data classification,
and technology-specific attack patterns.

[AM1.2: 73] Use a data classification scheme for software
inventory.
Security stakeholders in an organization agree on a data
classification scheme and use it to inventory software, delivery
artifacts (e.g., containers), and associated persistent data stores
according to the kinds of data processed or services called,
regardless of deployment model (e.g., on- or off-premises). Many
classification schemes are possible—one approach is to focus on PII,
for example. Depending on the scheme and the software involved, it
could be easiest to first classify data repositories (see [CP2.1]), then
derive classifications for applications according to the repositories
they use. Other approaches include data classification according to
protection of intellectual property, impact of disclosure, exposure to
attack, relevance to GDPR, and geographic boundaries.

[AM1.3: 49] Identify potential attackers.
The SSG identifies potential attackers in order to understand and
begin documenting their motivations and abilities. The outcome
of this periodic exercise could be a set of attacker profiles that
includes outlines for categories of attackers, and more detailed
descriptions for noteworthy individuals, that are used in end-to-end
design review (see [AA1.2]). In some cases, a third-party vendor
might be contracted to provide this information. Specific and
contextual attacker information is almost always more useful than
generic information copied from someone else’s list. Moreover, a
list that simply divides the world into insiders and outsiders won’t
drive useful results. Identification of attackers should also consider
the organization’s evolving software supply chain, attack surface,
theoretical internal attackers, and contract staff.

[AM1.5: 81] Gather and use attack intelligence.
The SSG ensures the organization stays ahead of the curve by
learning about new types of attacks and vulnerabilities, then adapts
that information to the organization’s needs. Attack intelligence must
be made actionable and useful for a variety of consumers, which
might include developers, testers, DevOps, security operations, and
reliability engineers, among others. In many cases, a subscription to a
commercial service can provide a reasonable way of gathering basic
attack intelligence related to applications, APIs, containerization,
orchestration, cloud environments, etc. Attending technical
conferences and monitoring attacker forums, then correlating that
information with what’s happening in the organization (perhaps by
leveraging automation to mine operational logs and telemetry) helps
everyone learn more about emerging vulnerability exploitation.

35

[AM2.1: 16] Build attack patterns and abuse cases tied to
potential attackers.
The SSG works with stakeholders to build attack patterns and abuse
cases tied to potential attackers (see [AM1.3]). Attack patterns
frequently contain details of the targeted asset, attackers, goals,
and the techniques used. These resources can be built from scratch
or from standard sets, such as the MITRE ATT&CK framework,
with the SSG adding to the pile based on its own attack stories to
prepare the organization for SSDL activities such as design review
and penetration testing. For example, a story about an attack
against a poorly designed cloud-native application could lead to a
containerization attack pattern that drives a new type of testing (see
[ST3.5]). If a firm tracks the fraud and monetary costs associated
with specific attacks, this information can in turn be used to
prioritize the process of building attack patterns and abuse cases.
Organizations will likely need to evolve both their attack pattern and
abuse case creation prioritization and their content over time due
to changing software architectures (e.g., zero trust, cloud native,
serverless), attackers, and technologies.

[AM2.6: 16] Collect and publish attack stories.
To maximize the benefit from lessons that don’t always come cheap,
the SSG collects and publishes stories about attacks against the
organization’s software. Both successful and unsuccessful attacks
can be noteworthy, and discussing historical information about
software attacks has the added effect of grounding software security
in a firm’s reality. This is particularly useful in training classes (see
[T2.8]) to help counter a generic approach that might be overly
focused on other organizations’ most common bug lists or outdated
platform attacks. Hiding or overly sanitizing information about
attacks from people building new systems fails to garner any positive
benefits from a negative event.

[AM2.7: 15] Build an internal forum to discuss attacks.
The organization has an internal, interactive forum where the SSG,
the satellite (champions), incident response, and others discuss
attacks and attack methods. The discussion serves to communicate
the attacker perspective to everyone, so it’s useful to include all
successful attacks here, regardless of attack source, such as
supply chain, internal, consultants, or bug bounty contributors. The
SSG augments the forum with an internal communication channel
(see [T2.12]) that encourages subscribers to discuss the latest
information on publicly known incidents. Dissection of attacks
and exploits that are relevant to a firm are particularly helpful
when they spur discussion of software, infrastructure, and other
mitigations. Simply republishing items from public mailing lists
doesn’t achieve the same benefits as active and ongoing discussions,
nor does a closed discussion hidden from those creating code and
configurations. Everyone should feel free to ask questions and learn
about vulnerabilities and exploits.

[AM2.8: 20] Have a research group that develops new
attack methods.
A research group works to identify and mitigate the impact of new
classes of attacks and shares their knowledge with stakeholders.
Identification does not always require original research—the group
might expand on an idea discovered by others. Doing this research in-
house is especially important for early adopters of new technologies
and configurations so that they can discover potential weaknesses
before attackers do. One approach is to create new attack methods
that simulate persistent attackers during goal-oriented red team
exercises (see [PT3.1]). This isn’t a penetration testing team finding
new instances of known types of weaknesses, it’s a research group
that innovates attack methods and mitigation approaches. Example
mitigation approaches include test cases, static analysis rules,
attack patterns, standards, and policy changes. Some firms provide
researchers time to follow through on their discoveries by using bug
bounty programs or other means of coordinated disclosure (see
[CMVM3.7]). Others allow researchers to publish their findings at
conferences like DEF CON to benefit everyone.

[AM2.9: 16] Monitor automated asset creation.
Implement technology controls that provide a continuously updated
view of the various network, machine, software, and related
infrastructure assets being instantiated by engineering teams. To
help ensure proper coverage, the SSG works with engineering teams
(including potential shadow IT teams) to understand orchestration,
cloud configuration, and other self-service means of software delivery
to ensure proper monitoring. This monitoring requires a specialized
effort—normal system, network, and application logging and analysis
won’t suffice. Success might require a multi-pronged approach,
including consuming orchestration and virtualization metadata,
querying cloud service provider APIs, and outside-in crawling and
scraping.

[AM3.2: 8] Create and use automation to mimic attackers.
The SSG arms engineers, testers, and incident response with
automation to mimic what attackers are going to do. For example,
a new attack method identified by an internal research group (see
[AM2.8]) or a disclosing third party could require a new tool, so the
SSG, perhaps through the champions, could package the tool and
distribute it to testers. The idea here is to push attack capability past
what typical commercial tools and offerings encompass, then make
that knowledge and technology easy for others to use. Mimicking
attackers, especially attack chains, almost always requires tailoring
tools to a firm’s particular technology stacks, infrastructure, and
configurations. When technology stacks and coding languages
evolve faster than vendors can innovate, creating tools and
automation in-house might be the best way forward. In the DevOps
world, these tools might be created by engineering and embedded
directly into toolchains and automation (see [ST3.6]).

36

[AM3.4: 13] Create technology-specific attack patterns.
The SSG facilitates technology-specific attack pattern creation by
collecting and providing knowledge about attacks relevant to the
organization’s technologies. For example, if the organization’s cloud
software relies on a cloud vendor’s security apparatus (e.g., key and
secrets management), the SSG or appropriate SMEs can help catalog
the quirks of the crypto package and how it might be exploited.
Attack patterns directly related to the security frontier (e.g., AI,
serverless) can be useful here as well. It’s often easiest to start with
existing generalized attack patterns to create the needed technology-
specific ones, but simply adding “for microservices” at the end of a
generalized pattern name, for example, won’t suffice.

[AM3.5: 11] Maintain and use a top N possible attacks list.
The SSG periodically digests the ever-growing list of applicable attack
types, creates a prioritized short list—the top N—and then uses the
list to drive change. This initial list almost always combines input
from multiple sources, both inside and outside the organization.
Some organizations prioritize their list according to a perception of
potential business loss while others might prioritize according to
preventing successful attacks against their software. The top N list
doesn’t need to be updated with great frequency, and attacks can
be coarsely sorted. For example, the SSG might brainstorm twice a
year to create lists of attacks the organization should be prepared to
counter “now,” “soon,” and “someday.”

Intelligence: Security Features & Design (SFD)
The Security Features & Design practice is charged with creating
usable security patterns for major security controls (meeting the
standards defined in the Standards & Requirements practice),
building components and services for those controls, and
establishing collaboration during security design efforts.

[SFD1.1: 100] Integrate and deliver security features.
Provide proactive guidance on preapproved security features for
engineering groups to use rather than each group implementing
its own security features. Engineering groups benefit from
implementations that come preapproved, and the SSG benefits by not
having to repeatedly track down the kinds of subtle errors that often
creep into security features (e.g., authentication, role management,
key management, logging, cryptography, protocols). These security
features might be discovered during SSDL activities, created by the
SSG or specialized development teams, or defined in configuration
templates (e.g., cloud blueprints) and delivered via mechanisms
such as SDKs, containers, microservices, and APIs. Generic security
features often must be tailored for specific platforms. For example,
each mobile and cloud platform might need its own means by which
users are authenticated and authorized, secrets are managed, and
user actions are centrally logged and monitored. It’s implementing
and disseminating these defined security features that generates real
progress, not simply making a list of them.

[SFD1.2: 95] Application architecture teams engage with
the SSG.
Application architecture teams take responsibility for security in
the same way they take responsibility for performance, availability,
scalability, and resiliency. One way to keep security from falling out
of these architecture discussions is to have secure design experts
(from the SSG, a vendor, etc.) participate. Increasingly, architecture
discussions include developers and site reliability engineers who are
governing all types of software components, such as open source,
APIs, containers, and cloud services. In other cases, enterprise
architecture teams have the knowledge to help the experts create
secure designs that integrate properly into corporate design
standards. Proactive engagement with experts is key to success
here. In addition, it’s never safe for one team to assume another team
has addressed security requirements—even moving a well-known
system to the cloud means reengaging the experts.

[SFD2.1: 45] Leverage secure-by-design components and
services.
Build or provide approved secure-by-design software components
and services for use by engineering teams. Prior to approving and
publishing secure-by-design software components and services,
including open source and cloud services, the SSG must carefully
assess them for security. This assessment process to declare a
component secure-by-design is usually more rigorous and in-depth
than that for typical projects. In addition to teaching by example,
these resilient and reusable building blocks aid important efforts
such as architecture analysis and code review by making it easier
to avoid mistakes. These components and services also often have
features (e.g., application identity, RBAC) that enable uniform usage
across disparate environments. Similarly, the SSG might further
take advantage of this defined list by tailoring static analysis rules
specifically for the components it offers (see [CR2.6]).

[SFD2.2: 70] Create capability to solve difficult design
problems.
Contribute to building resilient architectures by solving design
problems unaddressed by organizational security components or
services, or by cloud service providers, thus minimizing the negative
impact that security has on other constraints, such as feature
velocity. Involving the SSG and secure design experts in application
refactoring or in the design of a new protocol, microservice, or
architecture feature (e.g., containerization) enables timely analysis
of the security implications of existing defenses and identifies
elements to be improved. Designing for security early in the new
project process is more efficient than analyzing an existing design for
security and then refactoring when flaws are uncovered (see [AA1.1],
[AA1.2], [AA2.1]). The SSG could also get involved in what would have
historically been purely engineering discussions, as even rudimentary
use of cloud-native technologies (e.g., “Hello, world!”) requires
proper use of configurations and other capabilities that have direct
implications on security posture.

37

[SFD3.1: 18] Form a review board to approve and maintain
secure design patterns.
A review board formalizes the process of reaching and maintaining
consensus on security tradeoffs in design needs. Unlike a typical
architecture committee focused on functions, this group focuses
on providing security guidance, preferably in the form of patterns,
standards, features, or frameworks. It also periodically reviews
already published design guidance (especially around authentication,
authorization, and cryptography) to ensure that design decisions
don’t become stale or out of date. This review board helps control
the chaos associated with adoption of new technologies when
development groups might otherwise make decisions on their own
without engaging the SSG or champions. Review board security
guidance can also serve to inform outsourced software providers
about security expectations (see [CP3.2]).

[SFD3.2: 22] Require use of approved security features and
frameworks.
Implementers must take their security features and frameworks
from an approved list or repository (see [SFD1.1], [SFD2.1], [SFD3.1]).
There are two benefits to this activity—developers don’t spend time
reinventing existing capabilities, and review teams don’t have to
contend with finding the same old defects in new projects or when
new platforms are adopted. Reusing proven components eases
testing, code review, and threat modeling (see [AA1.1]). Reuse
is a major advantage of consistent software architecture and is
particularly helpful for Agile development and velocity maintenance in
CI/CD pipelines. Packaging and applying required components, such
as via containerization (see [SE2.5]), makes it especially easy to reuse
approved features and frameworks.

[SFD3.3: 9] Find and publish secure design patterns from
the organization.
Foster centralized design reuse by collecting secure design patterns
(sometimes referred to as security blueprints) from across the
organization and publishing them for everyone to use. A section
of the SSG website (see [SR1.2]) could promote positive elements
identified during threat modeling or architecture analysis so that
good ideas spread widely. This process is formalized—an ad
hoc, accidental noticing isn’t sufficient. Common design patterns
accelerate development, so it’s important to use secure design
patterns, and not just for applications but for all software assets (e.g.,
microservices, APIs, containers, infrastructure, and automation).

Intelligence: Standards & Requirements (SR)
The Standards & Requirements practice involves eliciting explicit
software security requirements from the organization, determining
which COTS tools to recommend, building standards for major
security controls (such as authentication and input validation),
creating security standards for technologies in use, and creating a
standards review process.

[SR1.1: 94] Create security standards.
The organization meets the demand for security guidance by creating
standards that explain the required way to adhere to policy and
carry out security-centric design, development, and operations. A
standard might mandate how to perform identity-based application
authentication or how to implement transport-level security, perhaps
with the SSG ensuring the availability of a reference implementation.
Standards often apply to software beyond the scope of an
application’s code, including container construction, orchestration,
infrastructure-as-code, and cloud security configuration. Standards
can be deployed in a variety of ways to keep them actionable and
relevant. For example, they can be automated into development
environments (such as an IDE or toolchain) or explicitly linked to code
examples and deployment artifacts (e.g., containers). In any case, to
be considered standards, they must be adopted and enforced.

[SR1.2: 103] Create a security portal.
The organization has a well-known central location for

information about software security. Typically, this is an internal
website maintained by the SSG and satellite (security champions)
that people refer to for current information on security policies,
standards, and requirements, as well as for other resources (such
as training). An interactive portal is better than a static portal
with guideline documents that rarely change. Organizations often
supplement these materials with mailing lists, chat channels
(see [T2.12]), and face-to- face meetings. Development teams
are increasingly putting software security knowledge directly into
toolchains and automation that are outside the organization (e.g.,
GitHub), but that does not remove the need for SSG-led knowledge
management.

[SR1.3: 98] Translate compliance constraints to
requirements.
Compliance constraints are translated into security requirements
for individual projects and communicated to the engineering teams.
This is a linchpin in the organization’s compliance strategy—by
representing compliance constraints explicitly with requirements
and informing stakeholders, the organization demonstrates that
compliance is a manageable task. For example, if the organization
builds software that processes credit card transactions, PCI
DSS compliance plays a role during the security requirements
phase. In other cases, technology standards built for international
interoperability can include security guidance on compliance needs.
Representing these standards as requirements also helps with
traceability and visibility in the event of an audit. It’s particularly
useful to codify the requirements into reusable code (see [SFD2.1]) or
artifact deployment specifications (see [SE2.2]).

38

[SR1.5: 101] Identify open source.
Identify open source components and dependencies included
in the organization’s code repositories and built software, then
review them to understand their security posture. Organizations
use a variety of tools and metadata provided by delivery pipelines
to discover old versions of open source components with known
vulnerabilities or that their software relies on multiple versions of
the same component. Scale efforts by using automated tools to find
open source, whether whole components or perhaps large chunks
of borrowed code. Some software development pipeline platforms,
container registries, and middleware platforms have begun to provide
this visibility as metadata (e.g., SBOMs [SE3.6]) resulting from
behind-the-scenes artifact scanning. Some organizations combine
composition analysis results from multiple phases of the software
lifecycle to get a more complete and accurate list of the open source
being included in production software.

[SR2.2: 75] Create a standards review process.
Create a process to develop software security standards and ensure
that all stakeholders have a chance to weigh in. This review process
could operate by appointing a spokesperson for any proposed
security standard, putting the onus on the person to demonstrate
that the standard meets its goals and to get buy-in and approval
from stakeholders. Enterprise architecture or enterprise risk groups
sometimes take on the responsibility of creating and managing
standards review processes. When the standards are implemented
directly as software, the responsible person might be a DevOps
manager, release engineer, or whoever owns the associated
deployment artifact (e.g., the orchestration code). Common
triggers for standards review processes include periodic updates,
security incidents, major vulnerabilities discovered, adoption of new
technologies, acquisition, etc.

[SR2.5: 63] Create SLA boilerplate.
The SSG works with the legal department to create standard SLA
boilerplate for use in contracts with vendors and outsource providers,
including cloud providers, to require software security efforts on their
part. The legal department might also leverage the boilerplate to help
prevent compliance and privacy problems. Under the agreement,
vendors and outsource providers must meet company-mandated
software security SLAs (see [CP2.4]). Boilerplate language might call
for objective third-party insight into software security efforts, such
as SSDF gap analysis (https://csrc.nist.gov/Projects/ssdf), BSIMMsc
measurements, or BSIMM scores.

[SR2.7: 58] Control open source risk.
The organization has control over its exposure to the risks that
come along with using open source components and all the involved
dependencies, including dependencies integrated at runtime.
Controlling exposure usually includes multiple efforts, with one
example being responding to known vulnerabilities in identified
open source (see [SR1.5]). The use of open source could also be
restricted to predefined projects or to a short list of versions that
have been through an approved security screening process, have
had unacceptable vulnerabilities remediated, and are made available
only through approved internal repositories and containers. For
some use cases, policy might preclude any use of open source. The
legal department often spearheads additional open source controls
due to license compliance objectives and the viral license problem
associated with GPL code. SSGs that partner with and educate the
legal department can help move an organization to improve its open
source risk management practices, which must be applied across the
software portfolio to be effective.

[SR3.2: 18] Communicate standards to vendors.
Work with vendors to educate them and promote the organization’s
security standards. A healthy relationship with a vendor often starts
with contract language (see [CP2.4]), but the SSG should engage with
vendors, discuss vendor security practices, and explain in simple
terms (rather than legalese) what the organization expects. Any
time a vendor adopts the organization’s security standards, it’s a
clear sign of progress. Note that standards implemented as security
features or infrastructure configuration could be a requirement to
services integration with a vendor (see [SFD1.1], [SE2.2]). When the
firm’s SSDL is publicly available, communication regarding software
security expectations is easier. Likewise, sharing internal practices
and measures can make expectations clear.

[SR3.3: 19] Use secure coding standards.
Developers use secure coding standards to avoid the most obvious
bugs and as ground rules for code review. These standards
are necessarily specific to a programming language, and they
can address the use of popular frameworks, APIs, libraries, and
infrastructure automation. Secure coding standards can also
be for low- or no-code platforms (e.g., Microsoft Power Apps,
Salesforce Lightning). While enforcement isn’t the point at this
stage (see [CR3.5]), violation of standards is a teachable moment
for all stakeholders. Other useful coding standards topics include
proper use of cloud APIs, use of approved cryptography, memory
sanitization, banned functions, open source use, and many others.
If the organization already has coding standards for other purposes
(e.g., style), its secure coding standards should build upon them. A
clear set of secure coding standards is a good way to guide both
manual and automated code review, as well as to provide relevant
examples for security training. Some groups might choose to
integrate their secure coding standards directly into automation.
Socializing the benefits of following standards is also a good first
step to gaining widespread acceptance (see [SM2.7]).

https://csrc.nist.gov/Projects/ssdf

39

[SR3.4: 21] Create standards for technology stacks.
The organization standardizes on the use of specific technology
stacks, which translates into a reduced workload because teams
don’t have to explore new technology risks for every new project. The
organization might create a secure base configuration (commonly
in the form of golden images, Terraform definitions, etc.) for each
technology stack, further reducing the amount of work required to
use the stack safely. In cloud environments, hardened configurations
likely include up-to-date security patches, configurations, and
services, such as logging and monitoring. In traditional on-premises
IT deployments, a stack might include an operating system, a
database, an application server, and a runtime environment (e.g., a
MEAN stack). Standards for secure use of reusable technologies,
such as containers, microservices, or orchestration code, means
that getting security right in one place positively impacts the security
posture of all downstream efforts (see [SE2.5]).

SDLC TOUCHPOINTS

SDLC Touchpoints: Architecture Analysis (AA)
Architecture analysis encompasses capturing software architecture
in concise diagrams, applying lists of risks and threats, adopting a
process for review (such as Microsoft Threat Modeling [STRIDE]
or Architecture Risk Analysis [ARA]), building an assessment and
remediation plan for the organization, and using a risk methodology
to rank applications.

[AA1.1: 108] Perform security feature review.
Security-aware reviewers identify application security features,

review these features against application security requirements and
runtime parameters, and determine if each feature can adequately
perform its intended function—usually collectively referred to as
threat modeling. The goal is to quickly identify missing security
features and requirements, or bad deployment configuration
(authentication, access control, use of cryptography, etc.), and
address them. For example, threat modeling would identify both a
system that was subject to escalation of privilege attacks because
of broken access control as well as a mobile application that
incorrectly puts PII in local storage. Use of the firm’s secure-by-
design components often streamlines this process (see [SFD2.1]).
Many modern applications are no longer simply “3-tier” but instead
involve components architected to interact across a variety of tiers—
browser/endpoint, embedded, web, microservices, orchestration
engines, deployment pipelines, third-party SaaS, etc. Some of these
environments might provide robust security feature sets, whereas
others might have key capability gaps that require careful analysis,
so organizations should consider the applicability and correct use of
security features across all tiers that constitute the architecture and
operational environment.

[AA1.2: 59] Perform design review for high-risk applications.
Perform a design review to determine whether the security features
and deployment configuration are resistant to attack in an attempt to
break the design. The goal is to extend the more formulaic approach
of a security feature review (see [AA1.1]) to model application
behavior in the context of real-world attackers and attacks. Reviewers
must have some experience beyond simple threat modeling to
include performing detailed design reviews and breaking the design
under consideration. Rather than security feature guidance, a design
review should produce a set of flaws and a plan to mitigate them.
An organization can use consultants to do this work, but it should
participate actively. A review focused only on whether a software
project has performed the right process steps won’t generate useful
results about flaws. Note that a sufficiently robust design review
process can’t be executed at CI/CD speed, so organizations should
focus on a few high-risk applications to start (see [AA1.4]).

[AA1.4: 63] Use a risk methodology to rank applications.
Use a defined risk methodology to collect information about each
application in order to assign a risk classification and associated
prioritization. It is important to use this information in prioritizing
what applications or projects are in scope for testing, including
security feature and design reviews. Information collection can be
implemented via questionnaire or similar method, whether manual
or automated. Information needed for classification might include,
“Which programming languages is the application written in?” or
“Who uses the application?” or “Is the application’s deployment
software-orchestrated?” Typically, a qualified member of the
application team provides the information, but the process should be
short enough to take only a few minutes. The SSG can then use the
answers to categorize the application as, e.g., high, medium, or low
risk. Because a risk questionnaire can be easy to game, it’s important
to put into place some spot-checking for validity and accuracy—an
overreliance on self-reporting can render this activity useless.

[AA2.1: 35] Perform architecture analysis using a defined
process.
Define and use a process for AA that extends the design review
(see [AA1.2]) to also document business risk in addition to technical
flaws. The goal is to identify application design flaws as well as
the associated risk (e.g., impact of exploitation), such as through
frequency or probability analysis, to more completely inform
stakeholder risk management efforts. The AA process includes a
standardized approach for thinking about attacks, vulnerabilities, and
various security properties. The process is defined well enough that
people outside the SSG can carry it out. It’s important to document
both the architecture under review and any security flaws uncovered,
as well as risk information that people can understand and use.
Microsoft Threat Modeling, Versprite PASTA, and Synopsys ARA
are examples of such a process, although these will likely need to
be tailored to a given environment. In some cases, performing AA
and documenting business risk is done by different teams working
together in a single process. Uncalibrated or ad hoc AA approaches
don’t count as a defined process.

40

[AA2.2: 34] Standardize architectural descriptions.
Threat modeling, design review, or AA processes use an agreed-
upon format (e.g., diagramming language and icons, not simply
a text description) to describe architecture, including a means for
representing data flow. Standardizing architecture descriptions
between those who generate the models and those who analyze
and annotate them makes analysis more tractable and scalable.
High-level network diagrams, data flow, and authorization flows are
always useful, but the model should also go into detail about how the
software itself is structured. A standard architecture description can
be enhanced to provide an explicit picture of information assets that
require protection, including useful metadata. Standardized icons that
are consistently used in diagrams, templates, and dry-erase board
squiggles are especially useful, too.

[AA2.4: 40] Have SSG lead design review efforts.
The SSG takes a lead role in performing design review (see [AA1.2])
to uncover flaws. Breaking down an architecture is enough of an art
that the SSG, or other reviewers outside the application team, must
be proficient, and proficiency requires practice. This practice might
then enable, e.g., champions to take the day-to-day lead while the
SSG maintains leadership around knowledge and process. The SSG
can’t be successful on its own either—it will likely need help from
architects or implementers to understand the design. With a clear
design in hand, the SSG might be able to carry out a detailed review
with a minimum of interaction with the project team. Approaches to
design review evolve over time, so don’t expect to set a process and
use it forever. Outsourcing design review might be necessary, but it’s
also an opportunity to participate and learn.

[AA3.1: 20] Have engineering teams lead AA process.
Engineering teams lead AA to uncover technical flaws and document
business risk. This effort requires a well-understood and well-
documented process (see [AA2.1]). But even with a good process,
consistency is difficult to attain because breaking architecture
requires experience, so provide architects with SSG or outside
expertise in an advisory capacity. Engineering teams performing AA
might normally have responsibilities such as development, DevOps,
cloud security, operations security, security architecture, or a variety
of similar roles. The process is more useful if the AA team is different
from the design team.

[AA3.2: 8] Drive analysis results into standard design patterns.
Failures identified during threat modeling, design review, or AA are fed
back to security and engineering teams so that similar mistakes can
be prevented in the future through improved design patterns, whether
local to a team or formally approved for everyone (see [SFD3.1]). This
typically requires a root-cause analysis process that determines the
origin of security flaws, searches for what should have prevented
the flaw, and makes the necessary improvements in documented
security design patterns. Note that security design patterns can
interact in surprising ways that break security, so apply analysis
processes even when vetted design patterns are in standard use. For
cloud services, providers have learned a lot about how their platforms
and services fail to resist attack and have codified this experience
into patterns for secure use. Organizations that heavily rely on these
services might base their application-layer patterns on those building
blocks provided by the cloud service provider (for example, AWS
CloudFormation and Azure Blueprints) when making their own.

[AA3.3: 17] Make the SSG available as an AA resource or
mentor.
To build organizational AA capability, the SSG advertises experts
as resources or mentors for teams using the AA process (see
[AA2.1]). This effort might enable, e.g., security champions, site
reliability engineers, DevSecOps engineers, and others to take the
lead while the SSG offers advice. As one example, mentors help
tailor AA process inputs (such as design or attack patterns) to make
them more actionable for specific technology stacks. This reusable
guidance helps protect the team’s time so they can focus on the
problems that require creative solutions rather than enumerating
known bad habits. While the SSG might answer AA questions during
office hours (see [T2.12]), they will often assign a mentor to work
with a team, perhaps comprising both security-aware engineers and
risk analysts, for the duration of the analysis. In the case of high-risk
software, the SSG should play a more active mentorship role in
applying the AA process.

SDLC Touchpoints: Code Review (CR)
The Code Review practice includes use of code review tools (e.g.,
static analysis), development of tailored rules, customized profiles
for tool use by different roles (e.g., developers vs. auditors), manual
analysis, and tracking and measuring results.

[CR1.2: 84] Perform opportunistic code review.
Perform code review for high-risk applications in an opportunistic
fashion. For example, organizations can follow up a design review
with a code review looking for security issues in source code and
dependencies and perhaps also in deployment artifact configuration
(e.g., containers) and automation metadata (e.g., infrastructure-
as-code). This informal targeting often evolves into a systematic
approach (see [CR1.4]). Manual code review could be augmented
with the use of specific tools and services, but it has to be part of a
proactive process. When new technologies pop up, new approaches
to code review might become necessary.

[CR1.4: 112] Use automated code review tools.
Incorporate static analysis into the code review process to

make the review more efficient and consistent. Automation won’t
replace human judgment, but it does bring definition to the review
process and security expertise to reviewers who typically aren’t
security experts. Note that a specific tool might not cover an entire
portfolio, especially when new languages are involved, so additional
local effort might be useful. Some organizations might progress to
automating tool use by instrumenting static analysis into source
code management workflows (e.g., pull requests) and delivery
pipeline workflows (build, package, and deploy) to make the review
more efficient, consistent, and aligned with release cadence. Whether
use of automated tools is to review a portion of the source code
incrementally, such as a developer committing new code or small
changes, or to conduct full analysis by scanning the entire codebase,
this service should be explicitly connected to a larger SSDL defect
management process applied during software development. This
effort is not useful when done just to “check the security box” on the
path to deployment.

41

[CR1.5: 74] Make code review mandatory for all projects.
A security-focused code review is mandatory for all software
projects, with a lack of code review or unacceptable results stopping
a release, slowing it down, or causing it to be recalled. While all
projects must undergo code review, the process might be different
for different kinds of projects. The review for low-risk projects might
rely more heavily on automation (see [CR1.4]), for example, whereas
high-risk projects might have no upper bound on the amount of
time spent by reviewers. Having a minimum acceptable standard
forces projects that don’t pass to be fixed and reevaluated. A code
review tool with nearly all the rules turned off (so it can run at CI/
CD automation speeds, for example) won’t provide sufficient defect
coverage. Similarly, peer code review or tools focused on quality and
style won’t provide useful security results.

[CR1.7: 55] Assign code review tool mentors.
Mentors show developers how to get the most out of code review
tools, including configuration, triage, and remediation. Security
champions, DevOps and site reliability engineers, and SSG members
often make good mentors. Mentors could use office hours or other
outreach to help developers establish the right configuration and
get started on interpreting and remediating results. Alternatively,
mentors might work with a development team for the duration of the
first review they perform. Centralized use of a tool can be distributed
into the development organization or toolchains over time through
the use of tool mentors, but providing installation instructions and
URLs to centralized tool downloads isn’t the same as mentoring.
Increasingly, mentorship extends to code review tools associated
with deployment artifacts (e.g., container security) and infrastructure
(e.g., cloud configuration). While AI is becoming useful to augment
human code review guidance, it likely doesn’t have the context
necessary to replace it.

[CR2.6: 26] Use custom rules with automated code review
tools.
Create and use custom rules in code review tools to help uncover
security defects specific to the organization’s coding standards or to
the framework-based or cloud-provided middleware the organization
uses. The same group that provides tool mentoring (see [CR1.7]) will
likely spearhead this customization. Custom rules are often explicitly
tied to proper usage of technology stacks in a positive sense and
avoidance of errors commonly encountered in a firm’s codebase in
a negative sense. Custom rules are also an easy way to check for
adherence to coding standards (see [CR3.5]). To reduce the workload
for everyone, many organizations also create rules to remove
repeated false positives and to turn off checks that aren’t relevant.

[CR2.7: 20] Use a top N bugs list (real data preferred).
Maintain a living list of the most important kinds of bugs the
organization wants to eliminate from its code and use it to drive
change. Many organizations start with a generic list pulled from
public sources, but broad-based lists such as the OWASP Top 10
rarely reflect an organization’s bug priorities. Build a valuable list by
using real data gathered from code review (see [CR2.8]), testing (see
[PT1.2]), software composition analysis (see [SE3.8]), and actual
incidents (see [CMVM1.1]), then prioritize it for prevention efforts.
Simply sorting the day’s bug data by number of occurrences won’t
produce a satisfactory list because the data changes so often. To
increase interest, the SSG can periodically publish a “most wanted”
report after updating the list. One potential pitfall with a top N list is
that it tends to include only known problems. Of course, just building
the list won’t accomplish anything—everyone has to use it to find and
fix bugs.

[CR2.8: 28] Use centralized defect reporting to close the
knowledge loop.
The defects found during code review are tracked in a centralized
repository that makes it possible to do both summary and trend
reporting for the organization. Reported defects drive engineering
improvements such as enhancing processes, updating standards,
adopting reusable frameworks, etc. For example, code review
information is usually incorporated into a CISO-level dashboard
that can include feeds from other security testing efforts (e.g.,
penetration testing, composition analysis, threat modeling). Given
the historical code review data, the SSG can also use the reports to
demonstrate progress (see [SM3.3]) or drive the training curriculum.
Individual bugs make excellent training examples (see [T2.8]). Some
organizations have moved toward analyzing this data and using the
results to drive automation (see [ST3.6]).

[CR3.2: 17] Build a capability to combine AST results.
Combine application security testing (AST) results so that multiple
testing techniques feed into one reporting and remediation process.
In addition to code review, testing techniques often include dynamic
analysis, software composition analysis, container scanning, cloud
services configuration review, etc. The SSG might write scripts or
acquire software to gather data automatically and combine the
results into a format that can be consumed by a single downstream
review and reporting solution. The tricky part of this activity is
normalizing vulnerability information from disparate sources
that might use conflicting terminology or scoring. In some cases,
using a standardized taxonomy (e.g., a CWE-like approach) can
help with normalization. Combining multiple sources helps drive
better-informed risk mitigation decisions and identify engineering
improvements.

42

[CR3.3: 5] Create capability to eradicate bugs.
When a security bug is found during code review (see [CR1.2],
[CR1.4]), the organization searches for and then fixes all occurrences
of the bug, not just the instance originally discovered. Searching with
custom rules (see [CR2.6]) makes it possible to eradicate the specific
bug entirely without waiting for every project to reach the code review
portion of its lifecycle. This doesn’t mean finding every instance of
every kind of cross-site scripting bug when a specific example is
found—it means going after that specific example everywhere. A
firm with only a handful of software applications built on a single
technology stack will have an easier time with this activity than firms
with many large applications built on a diverse set of technology
stacks. A new development framework or library, rules in RASP or
a next-generation firewall, or cloud configuration tools that provide
guardrails can often help in (but not replace) eradication efforts.

[CR3.4: 3] Automate malicious code detection.
Use automated code review to identify malicious code written by
in-house developers or outsource providers. Examples of malicious
code include backdoors, logic bombs, time bombs, nefarious
communication channels, obfuscated program logic, and dynamic
code injection. Although out-of-the-box automation might identify
some generic malicious-looking constructs, custom rules for the
static analysis tools used to codify acceptable and unacceptable
patterns in the organization’s codebase will likely become a necessity.
Manual review for malicious code is a good start but insufficient to
complete this activity at scale. While not all backdoors or similar
code were meant to be malicious when they were written (e.g.,
a developer’s feature to bypass authentication during testing),
such things tend to stay in deployed code and should be treated
as malicious until proven otherwise. Discovering some types of
malicious code will require dynamic testing techniques.

[CR3.5: 4] Enforce secure coding standards.
A violation of secure coding standards is sufficient grounds for
rejecting a piece of code. This rejection can take one or more forms,
such as denying a pull request, breaking a build, failing quality
assurance, removing from production, or moving the code into a
different development workstream where repairs or exceptions can
be worked out. The enforced portions of an organization’s secure
coding standards (see [SR3.3]) often start out as a simple list of
banned functions or required frameworks. Code review against
standards must be objective—it shouldn’t become a debate about
whether the noncompliant code is exploitable. In some cases, coding
standards are specific to language constructs and enforced with
tools (e.g., codified into SAST rules). In other cases, published coding
standards are specific to technology stacks and enforced during
the code review process or by using automation. Standards can be
positive (“do it this way”) or negative (“do not use this API”), but they
must be enforced.

SDLC Touchpoints: Security Testing (ST)
The Security Testing practice is concerned with prerelease defect
discovery as well as integrating security into standard QA processes.
The practice includes the use of opaque-box AST tools (including
fuzz testing) as a smoke test in QA, risk-driven crystal-box test suites,
application of the attack model, and code coverage analysis. Security
testing focuses on vulnerabilities in construction.

[ST1.1: 110] Perform edge/boundary value condition
testing during QA.

QA efforts go beyond functional testing to perform basic adversarial
tests and probe simple edge cases and boundary conditions, with
no particular attacker skills required. When QA pushes past standard
functional testing that uses expected input, it begins to move
toward thinking like an adversary. Boundary value testing, whether
automated or manual, can lead naturally to the notion of an attacker
probing the edges on purpose (e.g., determining what happens when
someone enters the wrong password over and over).

[ST1.3: 91] Drive tests with security requirements and
security features.
QA targets declarative security mechanisms with tests derived
from security requirements and features. A test could try to access
administrative functionality as an unprivileged user, for example, or
verify that a user account becomes locked after some number of
failed authentication attempts. For the most part, security features
can be tested in a fashion similar to other software features—security
mechanisms such as account lockout, transaction limitations,
entitlements, etc., are tested with both expected and unexpected
input as derived from security requirements. Software security isn’t
security software, but testing security features is an easy way to get
started. New software architectures and deployment automation,
such as with container and cloud infrastructure orchestration, might
require novel test approaches.

[ST1.4: 62] Integrate opaque-box security tools into the QA
process.
The organization uses one or more opaque-box security testing tools
as part of the QA process. Such tools are valuable because they
encapsulate an attacker’s perspective, albeit generically. Traditional
dynamic analysis scanners are relevant for web applications, while
similar tools exist for cloud environments, containers, mobile
applications, embedded systems, APIs, etc. In some situations,
other groups might collaborate with the SSG to apply the tools. For
example, a testing team could run the tool but come to the SSG for
help with interpreting the results. When testing is integrated into
Agile development approaches, opaque-box tools might be hooked
into internal toolchains, provided by cloud-based toolchains, or used
directly by engineering. Regardless of who runs the opaque-box
tool, the testing should be properly integrated into a QA cycle of the
SSDL and will often include both authenticated and unauthenticated
reviews.

43

[ST2.4: 23] Drive QA tests with AST results.
Share results from application security testing, such as penetration
testing, threat modeling, composition analysis, code reviews, etc.,
with QA teams to evangelize the security mindset. Using security
defects as the basis for a conversation about common attack
patterns or the underlying causes for them allows QA teams to
generalize this information into new test approaches. Organizations
that leverage software pipeline platforms such as GitHub, or CI/
CD platforms such as the Atlassian stack, can benefit from teams
receiving various testing results automatically, which should then
facilitate timely stakeholder conversations—emailing security reports
to QA teams will not generate the desired results. Over time, QA
teams learn the security mindset, and the organization benefits
from an improved ability to create security tests tailored to the
organization’s code.

[ST2.5: 34] Include security tests in QA automation.
Security tests are included in an automation framework and run
alongside functional, performance, and other QA test suites.
Executing this automation framework can be triggered manually or
through additional automation (e.g., as part of pipeline tooling). When
test creators who understand the software create security tests,
they can uncover more specialized or more relevant defects than
commercial tools might (see [ST1.4]). Security tests might be derived
from typical failures of security features (see [SFD1.1]), from creative
tweaks of functional and developer tests, or even from guidance
provided by penetration testers on how to reproduce an issue. Tests
that are performed manually or out-of-band likely will not provide
timely feedback.

[ST2.6: 25] Perform fuzz testing customized to application
APIs.
QA efforts include running a customized fuzzing framework against
APIs critical to the organization. An API might be software that
allows two applications to communicate or even software that
allows a human to interact with an application (e.g., a webform).
Testers could begin from scratch or use an existing fuzzing toolkit,
but the necessary customization often goes beyond creating custom
protocol descriptions or file format templates to giving the fuzzing
framework a built-in understanding of application interfaces and
business logic. Test harnesses developed explicitly for specific
applications make good places to integrate fuzz testing.

[ST3.3: 16] Drive tests with design review results.
Use design review or architecture analysis results to direct QA test
creation. For example, if the results of attempting to break a design
determine that “the security of the system hinges on the transactions
being atomic and not being interrupted partway through,” then torn
transactions will become a primary target in adversarial testing.
Adversarial tests like these can be developed according to a risk
profile, with high-risk flaws at the top of the list. Security defect data
shared with QA (see [ST2.4]) can help focus test creation on areas
of potential vulnerability that can, in turn, help prove the existence of
identified high-risk flaws.

[ST3.4: 4] Leverage code coverage analysis.
Testers measure the code coverage of their application security
testing to identify code that isn’t being exercised and then adjust
test cases to incrementally improve coverage. AST can include
automated testing (see [ST2.5], [ST2.6]) and manual testing (see
[ST1.1], [ST1.3]). In turn, code coverage analysis drives increased
security testing depth. Coverage analysis is easier when using
standard measurements, such as function coverage, line coverage, or
multiple condition coverage. The point is to measure how broadly the
test cases cover the security requirements, which is not the same as
measuring how broadly the test cases exercise the code.

[ST3.5: 3] Begin to build and apply adversarial security tests
(abuse cases).
QA teams incorporate test cases based on abuse cases (see
[AM2.1]) as testers move beyond verifying functionality and take on
the attacker’s perspective. One way to do this is to systematically
attempt to replicate incidents from the organization’s history. Abuse
and misuse cases based on the attacker’s perspective can also be
derived from security policies, attack intelligence, standards, and
the organization’s top N attacks list (see [AM3.5]). This effort turns
the corner in QA from testing features to attempting to break the
software under test.

[ST3.6: 6] Implement event-driven security testing in
automation.
The SSG guides implementation of automation for continuous,
event-driven application security testing. An event here is simply a
noteworthy occurrence, such as dropping new code in a repository,
a pull request, a build request, or a push to deployment. Event-driven
testing implemented in pipeline automation (rather than testing only
in production) typically moves the testing closer to the conditions
driving the testing requirement (whether shift left toward design or
shift right toward operations), repeats the testing as often as the
event is triggered, and helps ensure that the right testing is executed
for a given set of conditions. Success with this approach depends on
the broad use of sensors (e.g., agents, bots) that monitor engineering
processes, execute contextual rules, and provide telemetry to
automation that initiates the specified testing whenever event
conditions are met. More mature configurations typically include risk-
driven conditions (e.g., size of change, provenance, function, team).

44

DEPLOYMENT

Deployment: Penetration Testing (PT)
The Penetration Testing practice involves standard outside-in testing
of the sort carried out by security specialists. Penetration testing
focuses on vulnerabilities in preproduction and production code,
providing direct feeds to defect management and mitigation.

[PT1.1: 114] Use external penetration testers to find
problems.

External penetration testers are used to demonstrate that the
organization’s software needs help. Finding critical vulnerabilities in
high-profile applications provides the evidence that executives often
require. Over time, the focus of penetration testing moves from trying
to determine if the code is broken in some areas to a sanity check
done before shipping or on a periodic basis. In addition to breaking
code, this sanity check can also be an effective way to ensure that
vulnerability prevention techniques are both used and effective.
External penetration testers who bring a new set of experiences and
skills to the problem are the most useful.

[PT1.2: 102] Feed results to the defect management and
mitigation system.
All penetration testing results are fed back to engineering through
established defect management or mitigation channels, with
development and operations responding via a defect management
and release process. In addition to application vulnerabilities,
also track results from testing other software such as containers
and infrastructure configuration. Properly done, this exercise
demonstrates the organization’s ability to improve the state of
security and emphasizes the importance of not just identifying but
actually fixing security problems. One way to ensure attention is
to add a security flag to the bug-tracking and defect management
system. The organization might leverage developer workflow or
social tooling (e.g., JIRA or Slack) to communicate change requests,
but these requests are still tracked explicitly as part of a vulnerability
management process.

[PT1.3: 85] Use penetration testing tools internally.
The organization creates an internal penetration testing capability
that uses tools as part of an established process. Execution can
rest with the SSG or be part of a specialized team elsewhere in
the organization, with the tools complementing manual efforts to
improve the efficiency and repeatability of the testing process. The
tools used will usually include off-the-shelf products built specifically
for application penetration testing, network penetration tools that
specifically understand the application layer, container and cloud
configuration testing tools, and custom scripts. Free-time or crisis-
driven efforts aren’t the same as an internal capability.

[PT2.2: 42] Penetration testers use all available information.
Penetration testers, whether internal or external, routinely make use
of artifacts created throughout the SSDL to do more comprehensive
analysis and find more problems. Example artifacts include design
documents, architecture analysis results, misuse and abuse cases,
code review results, cloud environment and other deployment
configurations, and source code if applicable. Focusing on high-risk
applications is a good way to start. Note that having access to SSDL
artifacts is not the same as using them.

[PT2.3: 55] Schedule periodic penetration tests for
application coverage.
All applications are tested periodically, which could be tied to a
calendar or a release cycle. High-risk applications could get a
penetration test at least once per year, for example, even if there have
not been substantive code changes, while other applications might
receive different kinds of security testing on a similar schedule. Any
security testing performed must focus on discovering vulnerabilities,
not just checking a process or compliance box. This testing serves
as a sanity check and helps ensure that yesterday’s software isn’t
vulnerable to today’s attacks. The testing can also help maintain the
security of software configurations and environments, especially
for containers and components in the cloud. One important aspect
of periodic security testing across the portfolio is to make sure that
the problems identified are actually fixed. Software that isn’t an
application, such as automation created for CI/CD, infrastructure-as-
code, etc., deserves some security testing as well.

[PT3.1: 30] Use external penetration testers to perform
deep-dive analysis.
The SSG uses external penetration testers to do a deep-dive analysis
on critical software systems or technologies and to introduce fresh
thinking. One way to do this is to simulate persistent attackers
using goal-oriented red team exercises. These testers are domain
experts and specialists who keep the organization up to speed
with the latest version of the attacker’s perspective and have a
track record for breaking the type of software being tested. When
attacking the organization’s software, these testers demonstrate
a creative approach that provides useful knowledge to the people
designing, implementing, and hardening new systems. Creating new
types of attacks from threat intelligence and abuse cases typically
requires extended timelines, which is essential when it comes to new
technologies, and prevents checklist-driven approaches that look only
for known types of problems.

[PT3.2: 21] Customize penetration testing tools.
Build a capability to create penetration testing tools, or to adapt
publicly available ones, to attack the organization’s software more
efficiently and comprehensively. Creating penetration testing tools
requires a deep understanding of attacks (see [AM2.1], [AM2.8]) and
technology stacks (see [AM3.4]). Customizing existing tools goes
beyond configuration changes and extends tool functionality to
find new issues. Tools will improve the efficiency of the penetration
testing process without sacrificing the depth of problems that
the SSG can identify. Automation can be particularly valuable in
organizations using Agile methodologies because it helps teams go
faster. Tools that can be tailored are always preferable to generic
tools. Success here is often dependent on both the depth and scope
of tests enabled through customized tools.

45

Deployment: Software Environment (SE)
The Software Environment practice deals with OS and platform
patching (including in the cloud), WAFs (web application firewalls),
installation and configuration documentation, containerization,
orchestration, application monitoring, change management, and code
signing.

[SE1.1: 88] Use application input monitoring.
The organization monitors input to the software that it runs in order
to spot attacks. Monitoring systems that write log files are useful only
if humans or bots periodically review the logs and take action. For
web applications, RASP or a WAF can do this monitoring, while other
kinds of software likely require other approaches, such as custom
runtime instrumentation. Software and technology stacks, such as
mobile and IoT, likely require their own input monitoring solutions.
Serverless and containerized software can require interaction with
vendor software to get the appropriate logs and monitoring data.
Cloud deployments and platform-as-a-service usage can add another
level of difficulty to the monitoring, collection, and aggregation
approach.

[SE1.2: 113] Ensure host and network security basics
are in place.

The organization provides a solid foundation for its software by
ensuring that host (whether bare metal or virtual machine) and
network security basics are in place across its data centers and
networks, and that these basics remain in place during new releases.
Host and network security basics must account for evolving network
perimeters, increased connectivity and data sharing, software-defined
networking, and increasing dependence on vendors (e.g., content
delivery, load balancing, and content inspection services). Doing
software security before getting host and network security in place is
like putting on shoes before putting on socks.

[SE1.3: 92] Implement cloud security controls.
Organizations ensure that cloud security controls are in place and
working for both public and private clouds. Industry best practices
are a good starting point for local policy and standards to drive
controls and configurations. Of course, cloud-based assets often
have public-facing services that create an attack surface (e.g.,
cloud-based storage) that is different from the one in a private data
center, so these assets require customized security configuration
and administration. In the increasingly software-defined world, the
SSG has to help everyone explicitly configure cloud-specific security
features and controls (e.g., through cloud provider administration
consoles) comparable to those built with cables and physical
hardware in private data centers. Detailed knowledge about cloud
provider shared responsibility security models is always necessary to
ensure that the right cloud security controls remain in place.

[SE2.2: 68] Define secure deployment parameters and
configurations.
Create deployment automation or installation guides (e.g., standard
operating procedures) to help teams and customers install and
configure software securely. Software here includes applications,
products, scripts, images, firmware, and other forms of code.
Deployment automation usually includes a clearly described
configuration for software artifacts and the infrastructure-as-code
(e.g., Terraform, CloudFormation, ARM templates, Helm Charts)
necessary to deploy them, including details on COTS, open source,
vendor, and cloud services components. All deployment automation
should be understandable by humans, not just by machines,
especially when distributed to customers. Where deployment
automation is not applicable, customers or deployment teams need
installation guides that include hardening guidance and secure
configurations.

[SE2.4: 45] Protect code integrity.
Use code protection mechanisms (e.g., code signing) that allow the
organization to attest to the provenance, integrity, and authorization
of important code. While legacy and mobile platforms accomplished
this with point-in-time code signing and permissions activity,
protecting modern containerized software demands actions in
various lifecycle phases. Organizations can use build systems to
verify sources and manifests of dependencies, creating their own
cryptographic attestation of both. Packaging and deployment
systems can sign and verify binary packages, including code,
configuration, metadata, code identity, and authorization to release
material. In some cases, organizations allow only code from their
own registries to execute in certain environments. Protecting code
integrity can also include securing development infrastructure, using
permissions and peer review to govern code contributions, and
limiting code access to help protect integrity (see [SE3.9]).

[SE2.5: 63] Use application containers to support security
goals.
The organization uses application containers to support its software
security goals. Simply deploying containers isn’t sufficient to gain
security benefits, but their planned use can support a tighter coupling
of applications with their dependencies, immutability, integrity
(see [SE2.4]), and some isolation benefits without the overhead of
deploying a full operating system on a virtual machine. Containers
are a convenient place for security controls to be applied and updated
consistently (see [SFD3.2]), and while they are useful in development
and test environments, their use in production provides the needed
security benefits.

46

[SE2.7: 47] Use orchestration for containers and virtualized
environments.
The organization uses automation to scale service, container,
and virtualized environments in a disciplined way. Orchestration
processes take advantage of built-in and add-on security features
(see [SFD2.1]), such as hardening against drift, secrets management,
RBAC, and rollbacks, to ensure that each deployed workload meets
predetermined security requirements. Setting security behaviors
in aggregate allows for rapid change when the need arises.
Orchestration platforms are themselves software that becomes part
of your production environment, which in turn requires hardening
and security patching and configuration—in other words, if you use
Kubernetes, make sure you patch Kubernetes.

[SE3.2: 18] Use code protection.
To protect intellectual property and make exploit development
harder, the organization erects barriers to reverse engineering its
software (e.g., anti-tamper, debug protection, anti-piracy features,
runtime integrity). For some software, obfuscation techniques
could be applied as part of the production build and release
process. In other cases, these protections could be applied at the
software-defined network or software orchestration layer when
applications are being dynamically regenerated post-deployment.
Code protection is particularly important for widely distributed code,
such as mobile applications and JavaScript distributed to browsers.
On some platforms, employing Data Execution Prevention (DEP),
Safe Structured Exception Handling (SafeSEH), and Address Space
Layout Randomization (ASLR) can be a good start at making exploit
development more difficult, but be aware that yesterday’s protection
mechanisms might not hold up to today’s attacks.

[SE3.3: 18] Use application behavior monitoring and
diagnostics.
The organization monitors production software to look for
misbehavior or signs of attack. Go beyond host and network
monitoring to look for software-specific problems, such as
indications of malicious behavior, fraud, and related issues.
Application-level intrusion detection and anomaly detection systems
might focus on an application’s interaction with the operating system
(through system calls) or with the kinds of data that an application
consumes, originates, and manipulates. Signs that an application
isn’t behaving as expected will be specific to the software business
logic and its environment, so one-size-fits-all solutions probably
won’t generate satisfactory results. In some types of environments
(e.g., platform-as-a-service), some of this data and the associated
predictive analytics might come from a vendor.

[SE3.6: 22] Create bills of materials for deployed software.
Create a BOM detailing the components, dependencies, and other
metadata for important production software. Use this BOM to help
the organization tighten its security posture, i.e., to react with agility
as attackers and attacks evolve, compliance requirements change,
and the number of items to patch grows quite large. Knowing where
all the components live in running software—and whether they’re
in private data centers, in clouds, or sold as box products (see
[CMVM2.3])—allows for timely response when unfortunate events
occur.

[SE3.8: 2] Perform application composition analysis on code
repositories.
Use composition analysis results to augment software asset
inventory information with data on all components comprising
important applications. Beyond open source (see [SR1.5]), inventory
information (see [SM3.1]) includes component and dependency
information for internally developed (first-party), commissioned
code (second-party), and external (third-party) software, whether
that software exists as source code or binary. One common way of
documenting this information is to build SBOMs. Doing this manually
is probably not an option—keeping up with software changes likely
requires toolchain integration rather than carrying this out as a point-
in-time activity. This information is extremely useful in supply chain
security efforts (see [SM3.5]).

[SE3.9: 0] Protect integrity of development
toolchains.

The organization ensures the integrity of software it builds and
integrates by maintaining and securing all development infrastructure
and preventing unauthorized changes to source code and other
software lifecycle artifacts. Development infrastructure includes code
and artifact repositories, build pipelines, and deployment automation.
Secure the development infrastructure by safely handling and storing
secrets, following pipeline configuration requirements, patching tools
and build environments, limiting access to pipeline settings, and
auditing changes to configurations. Preventing unauthorized changes
typically includes enforcing least privilege access to code repositories
and requiring approval for code commits. Automatically granting
access for all project team members isn’t sufficient to adequately
protect software integrity.

Deployment: Configuration Management &
Vulnerability Management (CMVM)
The Configuration Management & Vulnerability Management practice
concerns itself with operations processes, patching and updating
applications, version control, defect tracking and remediation, and
incident handling.

[CMVM1.1: 117] Create or interface with incident
response.

The SSG is prepared to respond to an event or alert and is regularly
included in the incident response process, either by creating its
own incident response capability or by regularly interfacing with
the organization’s existing team. A standing meeting between the
SSG and the incident response team keeps information flowing
in both directions. Having prebuilt communication channels with
critical vendors (e.g., ISP, monitoring, IaaS, SaaS, PaaS) is also very
important.

47

[CMVM1.2: 95] Identify software defects found in operations
monitoring and feed them back to engineering.
Defects identified in production through operations monitoring are
fed back to development and used to change engineering behavior.
Useful sources of production defects include incidents, bug bounty
(see [CMVM3.4]), responsible disclosure (see [CMVM3.7]), SIEMs,
production logs, customer feedback, and telemetry from cloud
security posture monitoring, container configuration monitoring,
RASP, and similar technologies. Entering production defect data into
an existing bug-tracking system (perhaps by making use of a special
security flag) can close the information loop and make sure that
security issues get fixed. In addition, it’s important to capture lessons
learned from production defects and use these lessons to change the
organization’s behavior. In the best of cases, processes in the SSDL
can be improved based on operations data (see [CMVM3.2]).

[CMVM1.3: 98] Track software defects found in operations
through the fix process.
Defects found in operations (see [CMVM1.2]) are entered into
established defect management systems and tracked through the
fix process. This tracking ability could come in the form of a two-way
bridge between defect finders and defect fixers or possibly through
intermediaries (e.g., the vulnerability management team), but make
sure the loop is closed completely. Defects can appear in all types
of deployable artifacts, deployment automation, and infrastructure
configuration. Setting a security flag in the defect tracking system
can help facilitate tracking.

[CMVM2.1: 92] Have emergency response.
The organization can make quick code and configuration changes
when software (e.g., application, API, microservice, infrastructure)
is under attack. An emergency response team works in conjunction
with stakeholders such as application owners, engineering,
operations, and the SSG to study the code and the attack, find
a resolution, and fix the production code (e.g., push a patch into
production, rollback to a known-good state, deploy a new container).
Often, the emergency response team is the engineering team itself.
A well-defined process is a must here, a process that has never been
used might not actually work.

[CMVM2.3: 53] Develop an operations software inventory.
The organization has a map of its software deployments and related
containerization, orchestration, and deployment automation code,
along with the respective owners. If a software asset needs to be
changed or decommissioned, operations or DevOps teams can
reliably identify both the stakeholders and all the places where the
change needs to occur. Common components can be noted so that
when an error occurs in one application, other applications sharing
the same components can be fixed as well. Building an accurate
representation of an inventory will likely involve enumerating at least
the source code, the open source incorporated both during the build
and during dynamic production updates, the orchestration software
incorporated into production images, and any service discovery or
invocation that occurs in production.

[CMVM3.1: 14] Fix all occurrences of software defects found
in operations.
When a security defect is found in operations (see [CMVM1.2]), the
organization searches for and fixes all occurrences of the defect in
operations, not just the one originally reported. Doing this proactively
requires the ability to reexamine the entire operations software
inventory (see [CMVM2.3]) when new kinds of defects come to
light. One way to approach reexamination is to create a ruleset that
generalizes deployed defects into something that can be scanned
for via automated code review. In some environments, addressing a
defect might involve removing it from production immediately and
making the actual fix in some priority order before redeployment.
Use of orchestration can greatly simplify deploying the fix for all
occurrences of a software defect (see [SE2.7]).

[CMVM3.2: 24] Enhance the SSDL to prevent software
defects found in operations.
Experience from operations leads to changes in the SSDL (see
[SM1.1]), which can in turn be strengthened to prevent the
reintroduction of defects. To make this process systematic, the
incident response postmortem includes a feedback-to-SSDL step.
The outcomes of the postmortem might result in changes such as
to tool-based policy rulesets in a CI/CD pipeline and adjustments to
automated deployment configuration (see [SE2.2]). This works best
when root-cause analysis pinpoints where in the software lifecycle
an error could have been introduced or slipped by uncaught (e.g., a
defect escape). DevOps engineers might have an easier time with this
because all the players are likely involved in the discussion and the
solution. An ad hoc approach to SSDL improvement isn’t sufficient for
prevention.

[CMVM3.3: 18] Simulate software crises.
The SSG simulates high-impact software security crises to ensure
that software incident detection and response capabilities minimize
damage. Simulations could test for the ability to identify and
mitigate specific threats or could begin with the assumption that a
critical system or service is already compromised and evaluate the
organization’s ability to respond. Planned chaos engineering can be
effective at triggering unexpected conditions during simulations.
The exercises must include attacks or other software security crises
at the appropriate software layer to generate useful results (e.g., at
the application layer for web applications and at lower layers for IoT
devices). When simulations model successful attacks, an important
question to consider is the time required for clean up. Regardless,
simulations must focus on security-relevant software failure, not
on natural disasters or other types of emergency response drills.
Organizations that are highly dependent on vendor infrastructure
(e.g., cloud service providers, SaaS, PaaS) and security features will
naturally include those things in crisis simulations.

48

[CMVM3.4: 30] Operate a bug bounty program.
The organization solicits vulnerability reports from external
researchers and pays a bounty for each verified and accepted
vulnerability received. Payouts typically follow a sliding scale linked
to multiple factors, such as vulnerability type (e.g., remote code
execution is worth $10,000 vs. CSRF is worth $750), exploitability
(demonstrable exploits command much higher payouts), or specific
service and software versions (widely deployed or critical services
warrant higher payouts). Ad hoc or short-duration activities, such as
capture-the-flag contests or informal crowdsourced efforts, don’t
constitute a bug bounty program.

[CMVM3.5: 16] Automate verification of operational
infrastructure security.
The SSG works with engineering teams to verify with automation
the security properties (e.g., adherence to agreed-upon security
hardening) of infrastructure generated from controlled self-service
processes. Engineers use self-service processes to create networks,
storage, containers, and machine instances, to orchestrate
deployments, and to perform other tasks that were once IT’s sole
responsibility. In facilitating verification, the organization uses
machine-readable policies and configuration standards (see [SE2.2])
to automatically detect issues and report on infrastructure that
does not meet expectations. In some cases, the automation makes
changes to running environments to bring them into compliance,
but in many cases, organizations use a single policy to manage
automation in different environments, such as in multi- and hybrid-
cloud environments.

[CMVM3.6: 3] Publish risk data for deployable artifacts.
The organization collects and publishes risk information about
the applications, services, APIs, containers, and other software it
deploys. Whether captured through manual processes or telemetry
automation, published information extends beyond basic software
security (see [SM2.1]) and inventory data (see [CMVM2.3]) to include
risk information. This information usually includes constituency
of the software (e.g., BOMs [SE3.6]), provenance data about what
group created it and how, and the risks associated with known
vulnerabilities, deployment models, security controls, or other security
characteristics intrinsic to each artifact. This approach stimulates
cross-functional coordination and helps stakeholders take informed
risk management action. Making a list of risks that aren’t used for
decision support won’t achieve useful results.

[CMVM3.7: 35] Streamline incoming responsible
vulnerability disclosure.
Provide external bug reporters with a line of communication to
internal security experts through a low-friction, public entry point.
These experts work with bug reporters to invoke any necessary
organizational responses and to coordinate with external entities
throughout the defect management lifecycle. Successful disclosure
processes require insight from internal stakeholders, such as legal,
marketing, and public relations roles, to simplify and expedite
decision-making during software security crises (see [CMVM3.3]).
Although bug bounties might be important to motivate some
researchers (see [CMVM3.4]), proper public attribution and a
low-friction reporting process is often sufficient motivation for
researchers to participate in a coordinated disclosure. Most
organizations will use a combination of easy-to-find landing pages,
common email addresses (security@), and embedded product
documentation when appropriate (security.txt) as an entry point for
external reporters to invoke this process.

[CMVM3.8: 0] Do attack surface management for deployed
applications.
Operations standards and procedures proactively minimize
application attack surfaces by using attack intelligence and
application weakness data to limit vulnerable conditions. Finding and
fixing software defects in operations is important (see [CMVM1.2])
but so is finding and fixing errors in cloud security models, VPNs,
segmentation, security configurations for networks, hosts, and
applications, etc., to limit the ability to successfully attack deployed
applications. Combining attack intelligence (see [AM1.5]) with
information about software assets (see [AM2.9]) and a continuous
view of application weaknesses helps ensure that attack surface
management keeps pace with attacker methods. SBOMs (see
[SE3.6]) are also an important information source when doing attack
surface management in a crisis.

49

APPENDICES

50

A. ROLES IN A SOFTWARE
SECURITY INITIATIVE

An SSI requires thoughtful staffing with both full-time
and dotted-line people. You can use the descriptions
below to help define roles and responsibilities that
accommodate your needs for execution and growth.

In Part 4 of this report, we provided a summary of the different roles
involved in an SSI. Here, we provide details and data about those
roles.

EXECUTIVE LEADERSHIP
Historically, security initiatives that achieve firm-wide impact are
sponsored by a senior executive who creates an SSG where software
security governance and testing are distinctly separate from software
delivery (even when the groups have many shared responsibilities).
Security initiatives without that executive sponsorship, by
comparison, have historically had little lasting impact across the
firm. By identifying a senior executive and putting them in charge of
software security, the organization can address two “Management
101” concerns: accountability and empowerment.

FIGURE 5. PERCENTAGE OF SSGS WITH A CISO AS THEIR NEAREST
EXECUTIVE. Assuming new CISOs generally receive responsibilities for SSIs,
this data suggests that CISO role creation is also flattening out.

0%

10%

20%

30%

40%

50%

60%

BSIMM14BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7

FIGURE 6. NEAREST EXECUTIVE TO SSG. Although many SSGs have a CISO as their nearest executive, we see a variety of executives overseeing software
security efforts in the 130 BSIMM14 firms.

BSIMM12BSIMM13BSIMM14 BSIMM11 BSIMM10

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

18

18

50

50

52

52

54

54

56

56

CISO

CTO

Tech Org

CPSO

CSO

CFO

CIO

CRO

CPO

COO

CAO

Gen. Counsel

51

In BSIMM-V, we saw CISOs as the nearest executive in 21 of 67 firms,
which grew in BSIMM6 to 31 of 78, and again for BSIMM7 with 52 of
95. Since then, the percentage has remained relatively flat even as
BSIMM participation has grown, as shown in Figure 5.

If we look across all the executives nearest to SSG owners, not just
CISOs, we observe a large spread in the reporting path to executive
leadership for BSIMM10 through BSIMM14, as shown in Figure
6. The larger purple circles show by percentage the SSG leader’s
nearest executive in the BSIMM14 data pool, while smaller circles
show the percentages for previous BSIMMs. For example, a CISO
is the closest executive in 52% of organizations (67 of 130) in the
BSIMM14 data pool, and that percentage ranged from 50% to 58%
in BSIMM7 through BSIMM12. Starting with the BSIMM13 data pool,
we no longer see SSGs reporting to CRO (risk), CAO (assurance),
CPO (privacy), and General Counsel roles. Note that for BSIMM14, we
added 23 firms and removed 23 others, which also affects analysis
of reporting chains. Of course, across various organizations, not all
people with the same title perform, prioritize, enforce, or otherwise
provide resources for the same efforts in the same way.

CISOs in turn report to different executives among the 130 BSIMM14
firms. Figure 7 shows that CISOs report most commonly to CIOs (21
of 67, or almost 32% of the time) and report directly to the CEO about
12% of the time (8 of 67).

SOFTWARE SECURITY GROUP
LEADERS
SSG leaders are individuals in charge of day-to-day efforts in the 130
SSIs we studied for BSIMM14. They have a variety of titles, such as
the following:

•	 Application Security Manager

•	 Chief Product Officer

•	 Chief Product Security Officer

•	 Director Cloud and Application Security

•	 Director Cybersecurity

•	 Director Information Security

•	 Director Product Assurance

•	 Manager Software Security Office

•	 Product Security Officer

•	 Security Director

•	 Senior Director Security Engineering

•	 Senior Manager Information Security

•	 SVP Engineering

•	 SVP Information and Application Security

•	 VP Cybersecurity

•	 VP DevSecOps

•	 VP Engineering

•	 VP Information Security

•	 VP Product Security

•	 VP Security Architecture

•	 VP Security Compliance

When the SSG leader is an executive themselves, which happens 12%
of the time (15 out of 130), they are CISOs almost 60% of the time (9
out of 15), with other titles being CTO, CPSO (Chief Product Security
Officer), and CSO. As shown in Figure 8, SSG leaders are typically
one or two hops from their nearest executive (e.g., a CxO or related
technology organization title). In addition, we observed that this
nearest executive is usually a further two hops away from the CEO.

FIGURE 7. TO WHOM THE CISO REPORTS. For the BSIMM14 participants,
the CISO reports to a variety of roles, with the most common being the CIO,
CTO, and a technology executive (e.g., head of engineering, architecture, or
software).

1.5%
1.5%

1.5%

6%

6%

10.4%

11.9%

13.4%
16.4%

31.3%

Legal Board CROCFO COO

CSO CEO CTO Technology CIO
FIGURE 8. SSG LEADERSHIP REPORTING CHAINS. SSG leaders are typically
three or four hops away from the CEO.

CEOExecutiveSSG Leader

1.3 hops 2 hops

52

SOFTWARE SECURITY GROUP (SSG)
Each of the 130 initiatives in BSIMM14 has an SSG—an organizational
group dedicated to software security. In fact, without an SSG,
successfully carrying out BSIMM activities across a software portfolio
is very unlikely, so the creation of such a group is a crucial first step.
The SSG might start as a team of one—just the SSG leader—and
expand over time. The SSG might be entirely a corporate team, entirely
an engineering team, or an appropriate hybrid. The team’s name might
also have an appropriate organizational focus, such as application
security group or product security group, or perhaps DevSecOps.

Some SSGs are highly distributed across a firm whereas others are
centralized. Even within the most distributed organizations, we find that
software security activities are almost always coordinated by an SSG.

Although no two of the 130 firms we examined had exactly the same
SSG structure, we did observe some commonalities. At the highest
level, SSGs seem to come in five overlapping structures:

•	 Organized to provide software security services

•	 Organized around setting and verifying adherence to policy

•	 Designed to mirror business unit organizations

•	 Organized with a hybrid policy and services approach

•	 Structured around managing a matrixed team of experts doing
software security work across the development or engineering
organizations

Table 4 shows SSG-related statistics across the 130 BSIMM14 firms,
but note that a large outlier affects the numbers this year. The “Notes”
column shows the effect of removing outliers, or the top 10 firms,
for that SSG characteristic. When planning the size and structure of
your own SSG, consider the number of developers and applications
to determine what resources you need to scale the SSI. Refer to
Appendix H for more details on how SSGs evolve over time.

SECURITY CHAMPIONS (SATELLITE)
In addition to the SSG, many SSIs have identified individuals (often
developers, testers, architects, cloud and DevOps engineers,
and other SDLC roles) who are a driving force in improving
software security but are (likely) not directly employed in the
SSG. We historically refer to this group as the satellite, while
many organizations today refer to them as their software security
champions. A satellite can enable an SSI to scale its efforts while
reducing dependency on the SSG team, and there appears to be
a correlation between a higher BSIMM score and the presence of
champions, as shown in Figure 9. Having security champions carry
out software security activities removes SSG members from the
engineering critical path and empowers engineering teams to own
their software security deliverables and share responsibility for
software security objectives.

Security champions are often chosen for software portfolio
coverage (with one or two members in each engineering group),
and sometimes for reasons such as technology stack coverage or
geographical reach. The satellite can act as a sounding board for the
feasibility and practicality of proposed software security changes and
improvements. Understanding how SSI governance changes might
affect project timelines and budgets helps the champions proactively
identify potential frictions and minimize them.

A successful satellite gets together regularly to compare notes, learn
new technologies, and expand stakeholder understanding of the
organization’s software security challenges. Motivated individuals
often share digital work products, such as sensors, code, scripts,
tools, and security features, rather than, e.g., getting together
to discuss enacting a new policy. Specifically, these proactive
champions are working bottom-up and delivering software security
features and awareness through implementation.

For more information about security champions, refer to Appendix G.

THE SOFTWARE SECURITY GROUP

STATISTICS AVERAGE MEDIAN LARGEST SMALLEST NOTES – NO OUTLIERS
SSG Size 27.1 8.5 892.0 1.0 Average drops to 20.4 (one outlier)

SSG Members to Developer Ratio
(per 100 Developers) 3.87 1.38 51.43 0.02 Average drops to 2.09 (no top 10)

SSG to Developer Ratio (700+ Developers) -
66 Firms (per 100 Developers) 1.61 0.69 14.87 0.02

SSG to Developer Ratio (Less than 700
Developers) - 64 Firms (per 100 Developers) 6.19 2.33 51.43 0.33

Number of Developers 2,059 700 30,000 25

Number of Applications 741.24 121.00 8000.00 1.00

SSG Age 5.20 4.50 23.00 0.10

Satellite to Developer Ratio (per 100
Developers) 5.57 1.74 102.20 0.00 Average drops to 4.82 (one outlier)

Satellite to Developer Ratio (700+ Developers)
- 66 Firms (per 100 Developers) 4.75 2.00 57.14 0.00

Satellite to Developer Ratio (Less than 700
Developers) - 64 Firms (per 100 Developers) 6.43 0.10 102.20 0.00

SSG to Application Ratio (per 100 Developers) 81.81 8.79 2000.00 0.07 Average drops to 51.84 (one outlier)

TABLE 4. THE SOFTWARE SECURITY GROUP. We calculated the ratio of full-time SSG members to developers for the entire data pool by averaging the individual
ratio for each participating firm. In the Notes column, we show the impact of removing outliers in the data.

53

KEY STAKEHOLDERS
SSIs are truly cross-departmental efforts that involve a variety of
stakeholders:

•	 Builders, including developers, architects, and their managers,
must practice security engineering, taking some responsibility
for both the definition of “secure enough” as well as ensuring that
what’s delivered achieves the desired posture. An SSI requires
collaboration between the SSG and these engineering teams to
carry out the activities described in the BSIMM.

•	 Testers typically conduct functional and feature testing, but
moving on to include security testing is very useful. Some
testers are beginning to anticipate how software architectures
and infrastructures can be attacked and are working to find an
appropriate balance between automated and manual testing to
ensure adequate security testing coverage.

•	 Operations teams must continue to design, defend, and maintain
resilient environments because software security doesn’t end
when software is “shipped.” In accelerating trends, development
and operations are collapsing into one or more DevOps teams,
and the business functionality delivered is becoming very
dynamic. This means that an increasing amount of security effort,
including infrastructure controls and security configuration, is
becoming software defined (and that software should also be
secure).

•	 Administrators must understand the distributed nature of
modern systems, create and maintain secure configurations, and
practice the principle of least privilege, especially when it comes
to host, network, infrastructure, and cloud services for deployed
applications.

FIGURE 9. THE SATELLITE AND THE BSIMM SCORE. Eighty-eight percent of the top-scoring firms in the BSIMM14 data pool have a satellite (security
champions). In contrast, fewer than 40% of bottom-scoring firms have one.

•	 Executives and middle management, including business owners
and product managers, must understand how early investment
in security design and analysis affects the degree to which users
will trust their products. Business requirements should explicitly
address security needs, including security-related compliance.
Any sizable business today depends on software to work; thus,
software security is a business necessity. Executives are also
the group that must provide resources for new efforts that
directly improve software security and must actively support
digital transformation efforts related to infrastructure- and
governance-as-code.

•	 GRC, legal, and data privacy specialists form an integral part
of the software security effort in some firms, combining forces
with security specialists when engaging with engineering. They
might be responsible for analysis of contract terms, regulatory
and compliance requirements including privacy regulations,
definition of privacy requirements, and tracking of PII and other
regulated data categories. This has become increasingly common
in response to requirements such as GDPR, CCPA, and other
regulations.

•	 Procurement and vendor management need to communicate
and enforce security requirements with vendors, including those
who supply on-premises products, custom software, and SaaS.
Software supply chain vendors are increasingly subjected to
software security SLAs and reviews (such as the PCI SSF and the
Secure Software Development Framework [SSDF]) to help ensure
that their products are the result of an SSDL. Of course, not all
software (e.g., open source) comes from a vendor. Procurement
and vendor management play a vital role but aren’t the only
stakeholders responsible for managing software supply chain risk.

38%
10 of 26 of the

bottom 20% of firms
have champions

60%
47 of 78 of the

middle 60% of firms
have champions

88%
23 of 26 of the

top 20% of firms
have champions

54

B. HOW TO BUILD OR UPGRADE
AN SSI

Putting someone in charge is just a first step in building
an SSI, there will be iterations of planning, growth,
measurement, and bridge-building. You can use the
processes below to guide your SSI’s growth from newly
emerging through dependable maturity.

The BSIMM is not just a long-term software security study or a
single-purpose SSI benchmarking tool—it also eases management
and evolution for anyone in charge of software security, whether
that person is currently in a central governance-focused position
or in a more local engineering-focused team. Firms of all maturity
levels, sizes, and verticals use the BSIMM as a reference guide when
building new SSIs or evolving their initiatives through various maturity
and stakeholder ownership phases over time.

We often refer to SSIs we’ve seen as being in one of three broad
states—emerging, maturing, and enabling—which we describe as
follows:

•	 Emerging. An emerging SSI has defined its initial strategy, chosen
foundational activities (e.g., those observed most frequently in
the data pool), acquired some resources, and created a general
roadmap for the next 18 months. SSI leaders are likely resource-
constrained on both people and budget, so the SSG is usually
small and uses compliance requirements or other executive
mandates to drive participation and to continue adding activities.
These leaders require strong, visible, and ongoing executive
support to manage frictions with key stakeholders who are
resistant to adopting foundational process discipline.

•	 Maturing. A maturing SSI has an in-place team, defined
processes for interacting with software security stakeholders,
and a documented software security approach that is clearly
connected to executive expectations for both managing software
security risk and progressing along a roadmap to scale security
capabilities. A maturing SSI is learning from its existing efforts,
likely making consistent, incremental improvements in the SSDL
and key security integrations. Example improvements include:

	- Reducing friction across business and development
stakeholders

	- Protecting people’s productivity gains through automation
investments

	- Building bridges to other parts of the firm through evangelism,
defect discovery, software supply chain protection, and incident
response

	- Undergoing a shift everywhere transformation to efficiently test
software artifacts as soon as appropriate

	- Adjusting the security strategy to keep pace with changes in
risk and risk management processes

	- Finding solutions to systemic problems and making them
broadly available as reusable, pre-approved IP

	- Responding quickly when attacks or other circumstances
uncover a lack of resiliency

•	 Enabling. An enabling SSI ensures that all stakeholders can meet
their objectives without putting the organization at unacceptable
risk. The following are important principles for an enabling SSI:

	- There is continuous evangelizing about the best way for all
stakeholders to meet security expectations, ensuring that the
path of least resistance for development and deployment is
also the most secure path, along with investing to proactively
overcome various people, process, technology, and cultural
growing pains.

	- The evolutionary needs of the SSI are harmonized with the
goals of business initiatives, such as digital transformation,
open source use, and cloud adoption.

	- A mature and integrated response to process and technical risk
invokes an innovation engine to make reasonably future-proof
solutions.

	- The use of culturally engrained approaches to automation,
blameless review of failures, and protection of critical
resources—people, for example—allow more time to tackle
security innovation.

	- A platform engineering perspective removes security activity
silos and ensures that all telemetry and benefits are available to
all stakeholders everywhere.

It’s compelling to imagine that organizations could reach a state
of emerging, maturing, or enabling simply by applying a certain
number or mix of activities to specific percentages of the staff and
software portfolio, but that doesn’t happen. Experience shows that
SSIs usually reach an emerging stage by organizing all the ad hoc
software security efforts they’re already doing into one program. SSIs
usually proceed to the maturing stage by focusing on the activities
that are right for them without regard for the total activity count. This
is especially true when considering the complexity of scaling some
activities across 100, 1,000, or 10,000+ applications or people.

Organizations rarely move their entire SSI from emerging to enabling
all at once. We have seen SSIs form, break up, and re-form over time,
so an SSI might shift between emerging, maturing, and enabling
a few times over the years. In addition, capabilities within an SSI
(e.g., supply chain security or training) likely won’t progress through
the same states at the same rate. We’ve noted cases where one
capability—vendor management, for example—might be emerging,
while the defect management capability is maturing, and the defect
discovery capability is in the enabling stage. There is also constant
change in tools, skill levels, external expectations, attackers, attacks,
resources, culture, and everything else. You can use the BSIMM14
participants scorecard (see Figure 17 in Appendix D) to see the
frequency with which the BSIMM activities are observed across all
participants, but use your own metrics to determine if you’re making
the progress that’s right for you.

CONSTRUCTION LESSONS FROM THE
PARTICIPANTS
The purpose of the BSIMM is to measure SSIs. While the BSIMM
doesn’t directly measure SSI architecture, evolution, or motivations,
our experience with more than 273 organizations since 2008 has
highlighted cultural differences in SSI implementations.

No SSI is built in a vacuum. Whether your SSI is just emerging or has
some capabilities in the maturing stage, knowledge from both the

55

implementations go only so far in formally implementing software
security risk management as a culture.

Today, as you start or plan a major revamp of your SSI, just get
started. You can start in corporate, or you can start in engineering.
You can start with governance as a top priority, or you can focus on
some technical controls. In any case, history seems to show that
SSIs gravitate toward a focus on policy along with process that
ensures adherence. Yours likely will as well.

A New Wave in Engineering Culture
Over the past few years, we’re seeing a new wave of software
security efforts emerging from engineering teams. These teams are
usually responsible for delivering a product or value stream—such as
is common within ISVs—or maintaining a technology domain—such
as the “cloud security group” or a part of some digital transformation
group. Some organizations refer to these collective security efforts as
site reliability engineering, DevSecOps, or GitOps security, and some
have no specific name for it at all.

At least three factors are driving these new efforts:

•	 The confluence of process friction, unpredictable impacts on
delivery schedules, adversarial internal relationships, and a
growing number of human-intensive processes from existing
SSIs; top-down governance doesn’t fit culturally or technologically
with new engineering processes.

•	 The demands and pressures from modern software delivery
practices, be they cultural such as Agile and DevOps, or
technology-based such as cloud- and orchestration-based; gates
and checkpoints built for maximum assurance often cause
unacceptable disruption in processes built for speed.

•	 The shift to engineer self-service, typically seen as self-service

FIGURE 10. SSG EVOLUTION. These groups might have started in corporate
or in engineering but, in general, settled on enforcing compliance with tools.
The new wave of engineering efforts is shifting where SSGs live, what they
focus on, who is accountable for what, and how stakeholders work together.

Executive-led
Compliance-oriented

Corporate Engineering

Centralized governance
(SSG)

Corporate
(GRC)

Modern hybrids
(DevSecOps)

Engineering
(Self-Service)

2nd-generation
Engineering-led efforts

(DevOps)

Engineering-led
Procedure-oriented

Ea
rly

 2
00

0s
Ci

rc
a

20
06

To
da

y

struggles and successes of other organizations can save you time
and disruption. As software security becomes an important goal for
any organization, multiple internal groups might each be taking their
own approach to their goals. Understanding and harmonizing these
cultural and technological views into a single SSI is important to
long-term success.

Cultures
Whether implicitly or explicitly, organizations choose the path for
their software security journey by tailoring goals, methods, tools,
resources, and approaches according to their individual cultures.
There have always been two distinct cultures in the BSIMM
participants:

•	 Organizations where the SSG was started by executives in a
central corporate group (e.g., under a CISO) as a full-time role
and chartered with software security governance, including
compliance, testing, remediation monitoring, and risk
management. This SSG stayed in the corporate organization
chart, had the power to enact organization-wide policy, and
expanded its efforts outward through, for example, tooling and
security champions. This path was seen most often in regulated
industries such as banking, insurance, FinTech, and healthcare
but was also seen in ISV and technology firms.

•	 Organizations where the SSG was started by engineering
technical leadership (e.g., senior application architects) as a
part-time role and focused on technical software security efforts,
such as configuration hardening, technology stack standards,
secure coding standards, and security tool integration, which
was often done for a single toolchain or project. As evangelism
efforts convinced other development projects to use the same
technical controls, the technical leadership usually worked with a
CTO, VP Engineering, or other technology executive to establish
a centralized security function within the engineering domain.
The centralized function—often still part time—then used its
influence to establish its own type of governance, which was
often peer pressure to set some development process, create
and manage security standards, and ensure that the silos of
engineering, testing, and operations were aware of and adhered
to general security expectations. This path was most often seen
in technology, cloud, and ISV firms but was also seen in other
verticals.

Whether your SSI is just emerging or
has some capabilities in the maturing
stage, knowledge from both the
struggles and successes of other
organizations can save you time and
disruption.

Regardless of its origin point, each culture usually arrived at an SSI
driven by a centralized, dedicated SSG whose function is to ensure
that appropriate software security activities are happening across the
portfolio. That is, nearly all SSIs that are more than a couple of years
old are driven top-down by governance objectives, even those started
by engineering for engineering. Evangelism, peer pressure, and local

56

IT (cloud), configuration and deployment (DevOps), and
development (open source use and continuous integration); the
ability to instantiate infrastructure and pipelines is also the ability
to integrate your own security tools and configurations.

This new software security effort is frequently happening
independently from the lessons learned that an experienced SSG might
provide. In addition, this effort is driving many application lifecycle
processes ever faster, regardless of whether the organization is ready
to do software security risk management at that speed.

The governance-oriented approaches we’ve seen for years, along
with this new wave of engineering-oriented efforts, are increasingly
coexisting within the same organization. In addition, they often have
competing objectives, which is pulling traditional governance-driven
programs into modern and evolving hybrids. Figure 10 shows this
ongoing SSG evolution.

The important lesson here is that this is likely happening in your
organization as well—perhaps narrowly in a few development teams
or perhaps broadly as a culture shift across all of engineering.
Taking an SSI to the maturing stage—and possibly to enabling, as
well—requires acknowledging this engineering effort and building
bridges between all stakeholders who have ownership of the different
aspects of software security. It also requires acknowledging that
these different stakeholders have different business objectives and
different views of risk, risk management, and risk tolerance relative
to those objectives. Ensuring that everyone can meet their objective
while also keeping the organization safe is a major goal for every SSI.

Understanding More About DevOps
The DevOps movement has highlighted the tensions between
established SSIs and engineering efforts that address software
security their way in their own processes. Given different objectives,
we find that the outcomes desired by these two approaches are
usually very different. Rather than the top-down, compliance-driven
style of governance-minded teams, these newer engineering-minded
teams are more likely to prototype good ideas for securing software,
which results in the creation of even more code and infrastructure
on the critical path to delivery (e.g., security features, home-spun
vulnerability discovery, security guardrails).

Here, security is just another aspect of quality, and availability is
just another aspect of resilience. To keep pace with both software
development process changes (e.g., CI/CD adoption) and technology
architecture changes (e.g., cloud, container, and orchestration
adoption), engineering efforts are independently evolving both how
they apply software security activities and, in some cases, what
activities they apply. The changes these engineering teams are making
include downloading and integrating their own security tools, spinning
up self-service cloud infrastructure and virtual assets as they need
them, following policy on the use of OSS in applications but routinely
downloading many other open source packages to build and manage
software and processes, etc. Engineering efforts and their associated
fast-paced evolutionary changes are putting governance-driven SSIs
in a race to retroactively document, communicate, and even automate
the knowledge they hold so that it can be useful to everyone.

Cloud service providers, software pipeline and orchestration
platforms, and even QA tools have also begun adding their view of
software security in their feature sets. For example, organizations are

FIGURE 11. MOVING FROM EMERGING TO MATURING. Building an emerging
SSI usually focuses on collecting activities into a single program. Moving
from emerging to maturing requires ongoing iterative improvements and
expansions. Piloting new capabilities (e.g., security champions or software
supply chain risk management) likely requires reapplying the emerging
approach for a specific set of activities.

Build new capability

Emerging SSI

	

	

	
	

	

 	 Pilot	

Plan	
	

 Define	

	

	
	

	

 In
te

gr
at

e	
	

Optim
ize

SSI MATURING
CYCLE

seeing platforms like GitHub, Azure DevOps, and GitLab competing
by using security as a differentiator. Evolving vendor-provided
features might be signaling to both the marketplace and adopting
organizations that vendors believe security must be included in
developer tools and that engineering security initiatives should feel
comfortable relying on these external platforms as the basis of their
security telemetry and even their governance workflows.

Again, the important lesson is that this is likely happening in your
organization as well. Your path to an emerging or mature SSI must
account for this federation of software security responsibilities and
use of external providers, yet also enable every stakeholder to meet
their business and security objectives.

Convergence as a Goal
We frequently observe governance-oriented SSIs planning centrally,
seeking to proactively define an ideal risk posture during their
emerging or early maturity phases. Initial uptake of the provided
controls (e.g., security testing) is usually by those teams that have
experienced real security issues and are looking for help, while other
teams might take a wait-and-see approach.

We also observe that engineering efforts prototype controls
incrementally, building on existing tools and techniques that already
drive software delivery. Gains happen quickly in these emerging
efforts, perhaps given the steady influx of new tools and techniques
introduced by engineering but also helped along by the fact that
each team is usually working in a homogenous culture on a single
application and technology stack. Even so, these groups sometimes
struggle to institutionalize durable gains, usually because the
engineers have not yet been able to turn capability into either secure-
by-default functionality or automation-friendly assurance—at least
not beyond the most frequently encountered security issues and
beyond their own spheres of influence.

57

Engineering groups tend to view security as an enabler of software
features and code quality. These groups recognize the need for
having security standards but tend to prefer incremental steps
toward governance-as-code as opposed to a large-manual-steps-
with-human-review approach to enforcement. This tends to
result in engineers building security features and frameworks into
architectures, automating defect discovery techniques within a
software delivery pipeline, and treating security defects like any other
defect. Traditional human-driven security decisions are modeled
into a software-defined workflow as opposed to being written into
a document and implemented in a separate risk workflow handled
outside of engineering. In this type of culture, it’s not that the
traditional SDLC gates and risk decisions go away, it’s that they get
implemented differently and usually have different goals compared
to those of the governance groups. SSGs, and likely champions
groups as well, that begin to support this approach will speed up both
convergence of various efforts and alignment with corporate risk
management goals.

To summarize the lessons from the participants, scaling an emerging
SSI across a software portfolio is hard for everyone, and stakeholders
need to understand the lessons above before investing heavily in the
journey from emerging to maturing. Today’s evolving cultural and
technological environments require a concerted effort at converging
governance and engineering objectives to create a cohesive SSI that
ensures the software portfolio is appropriately protected.

PHASE
Create a
Software
Security Group

Document and
Socialize the
SSDL

Inventory
Applications
in the SSG’s
Purview

Apply
Infrastructure
Security in
Software
Environments

Deploy Defect
Discovery for
High-Priority
Applications

Manage
Discovered
Defects

Publish and
Promote the
Process

GOVERNANCE
CP1.1

SM1.1
SM2.7
AM3.5
CR2.7

SE2.2 CMVM1.3

SM1.4
SM3.4
CP1.3
SR1.1

ENABLEMENT
T1.1

SFD1.1
SR1.2 AM1.2

CP2.1
CMVM2.3

AA1.4
SM1.3
SR1.2

FLAW AND
DEFECT
DISCOVERY

SFD1.2 SR1.5

AA1.1
CR1.4
SR1.5
ST1.4
PT1.1

CMVM3.4

CR1.4
PT1.2 ST3.6

OPERATIONS CMVM1.1
SE1.2
SE1.3
SE2.7

CMVM1.2

● ● ●

●

● ●

● ● ●

● ●

● ● ●

● ● ●

● ● ●

 ●

● ● ●

● ● ●

 ●

● ●

● ● ●

 ●

● ● ●

● ● ●

The arrow of time (x-axis) is a notional order of efforts. Although this diagram appears to depict a waterfall process, many of these efforts will be happening at
the same time and some will be repeated multiple times.

FIGURE 12. GETTING STARTED ROADMAP WITH NOTIONAL EFFORTS. This roadmap is supplemented with relative effort levels so that organizations can plan
the resources needed for their emerging SSI.

Budget DurationPeople

FOR AN EMERGING SSI: SDLC TO SSDL
It’s unlikely that any organization is doing nothing about software
security. Even an organization without a formal initiative or a defined
owner likely has some software security policy, AST, and processes
for working with stakeholders. Provided below are actionable steps
for consolidating an ad hoc effort into an emerging SSI. Keep in
mind that most SSIs are multiyear efforts with real budget, mandate,
and ownership behind them, though. In addition, while all initiatives
look different and are tailored to fit a particular organization, most
initiatives share common core activities (see Table 7 in Appendix D).

Figure 12 organizes the steps and suggested timeline to establish
an emerging SSI, along with the associated BSIMM activities. It also
includes a notional level of effort anticipated across people and budget,
as well as estimated duration, all on a 1 – 3 scale. The effort and cost
to reach each of these goals will vary across companies, of course, but
is primarily affected by risk objectives, organizational structure, and
portfolio size. For example, deploying on-site static analysis across 10
applications using a common pipeline in one business unit will likely
have a lower level of effort than deploying that static analysis across
10 applications built in 10 toolchains in 10 business units.

Note that the getting started roadmap shown in Figure 12 includes
some activities that have a high impact for emerging SSIs even
though they appear to be rarely observed in the BSIMM data pool.
This happens because newly added BSIMM activities start with an
observation rate of zero (e.g., [ST3.6] added for BSIMM11). These
are foundational activities, even if organizations are just starting to

58

add them to their journeys. Importantly, the steps described here
are not specific to where in the organization the SSG is created. The
SSG can be centralized in a governance group or an engineering
group, or it can be federated across both. Regardless, governance
and engineering functions will have to cooperate to ensure the
achievement of organizational software security goals.

Note that an SSG leader with a young initiative (e.g., less than 18
months) working on foundations should not expect or set out to
quickly implement too many BSIMM activities. Firms can absorb only
a limited amount of technology, hiring, cultural, and process change
at any given time. The BSIMM14 data shows that SSIs having an age
of 18 months or less at the time of assessment (22 of 130 firms)
have an average score of about 33.

Following are some details on the steps shown in Figure 12. The
included activity references are meant to help the reader understand
the associations between the topic being discussed and one or more
BSIMM activities. Note that the references don’t mean the topic being
discussed is fully equivalent to the activity. For example, when we
say, “…initial inventory [AM1.2]” (i.e., Use a data classification scheme
for software inventory), we don’t mean that having the initial inventory
encompasses the totality of [AM1.2], just that having it will likely be
something you’ll do on your way to implementing [AM1.2]. To continue
using [AM1.2] as an example, most organizations will not set about
implementing this activity and get it all done all at once. Instead, an
organization will likely create an initial classification scheme and
inventory, implement a process to keep the inventory up to date, and
then decide how to create a view that’s meaningful for stakeholders.
Every activity has its own nuances and components, and every
organizational evolution path for its emerging SSI will be unique.

Create a Software Security Group
The most important first step for all SSIs is to have a dedicated
SSG that can get resources and drive organizational change, even
if it’s a group of one person coordinating organizational efforts.
The SSG must then understand which software security goals are
important to the business and establish policy and process to drive
everyone in that direction. At a minimum, the SSG should identify the
risk management, compliance, and contractual requirements that
the organization must adhere to [CP1.1]. Using awareness training
[T1.1] to then help ensure that everyone understands their security
responsibility is a common approach.

The SSG must work with engineering teams to establish a common
understanding of the approach to software security. The approach
might be to set up automated defect discovery, address security
questions from developers with reusable security features [SFD1.1],
and act as an advisor for design decisions [SFD1.2].

Document and Socialize the SSDL
Publish security policies and standards through established GRC
channels to complement existing IT security standards or create
those channels as necessary to secure the SDLC. The SSG can also
create a security portal (e.g., website or wiki) that houses SSDL
information centrally [SR1.2]. Similar to the approach for prioritizing
defect discovery efforts by categorizing attacks and bugs [AM3.5,
CR2.7], we observe these emerging SSIs driving initial standards
creation from industry top risks, leveraging general sources such as
MITRE, ISO, and NIST to form baseline requirements.

Getting the word out about the organization’s top risks and what can
be done about them is a key part of the SSG’s job. We observe these
leaders using every channel possible (e.g., town halls, brown bags,
communities of practice forums, messaging channels) to socialize the
software security message and raise awareness of the SSDL [SM2.7].

Inventory Applications
One of the first activities for any SSG is to create an initial inventory
of the application portfolio under its purview [AM1.2, CMVM2.3].
As a starting point, the inventory should include each application’s
important characteristics (e.g., programming language, architecture
type, open source used [SR1.5]). Particularly useful for monitoring
and incident response activities [CMVM1.1], many organizations will
include relevant operational data in the inventory (e.g., where the
application is deployed, owners, emergency contacts).

Inventory efforts tend to favor a top-down approach in the beginning,
usually starting with a questionnaire to elicit data from business
managers who serve as application owners, then using tools to find
OSS. The SSG also tends to focus on understanding where sensitive
data resides and flows (e.g., PII inventory) [CP2.1] and the resulting
business risk level associated with the application (e.g., critical, high,
medium, low).

When working with engineering teams, these efforts commonly
attempt to extract software inventory data from the tools used to
manage IT assets. By scraping these software and infrastructure
configuration management databases or code repositories, the SSG
crafts an inventory brick by brick rather than top-down.

Maintaining an application inventory is a capability to be built over
time rather than a one-time effort. To remain accurate and current,
the inventory must be regularly monitored and updated. As with all
data currency efforts, it’s important to make sure the data isn’t overly
burdensome to collect and is periodically spot-checked for validity.
Organizations should favor automation for application discovery and
management whenever possible.

Checklist for emerging SSIs
1.	 Create an SSG. Put a dedicated group in charge and

give them resources.

2.	 Document and socialize the SSDL. Tell all
stakeholders the expectations for software security.

3.	 Inventory applications. Decide on what you’re going
to focus on first, then apply good risk management.

4.	 Apply infrastructure security. Don’t put good
software on bad systems or in poorly constructed
networks (cloud or otherwise).

5.	 Deploy defect discovery. Determine the issues in
today’s in-progress and production applications, then
plan for tomorrow.

6.	 Manage discovered defects. Resolving issues
reduces risk.

7.	 Publish and promote. Roll out the secure SDLC and
promote it both bottom-up and top-down.

59

Apply Infrastructure Security
Bad infrastructure security can undermine good software security,
which means the SSG must ensure that host and network security
basics are in place [SE1.2] as well as cloud security controls [SE1.3].
Security engineers might begin by conducting this work manually,
then baking these settings and changes into their software-defined
infrastructure scripts [SE2.2] to ensure both consistent use within a
development team and scalable sharing across the organization.

Forward-looking organizations that have adopted software and
network orchestration technologies [SE2.7] (e.g., Kubernetes, Envoy,
Istio) get maximum impact from them with the efforts of even an
individual contributor, such as a security-minded DevOps engineer.
Though many of the technologies in which security engineers specify
hardening and security settings are human-readable, engineering
groups don’t typically take the time to extract and distill a document-
based security policy from these codebases.

Deploy Defect Discovery
Regardless of business drivers, one of the quickest ways of
transitioning unknown risk to managed risk is through defect
discovery. Use automated tools, both static and dynamic, to provide
fast, regular insight into the portfolio security posture, with experts
doing detailed testing for important applications [AA1.1, CMVM3.4].
While not necessarily done for the entire application portfolio,
conducting some targeted vulnerability discovery to get a feel for
the current risk posture allows firms to motivate the necessary
conversations with stakeholders to gain buy-in and prioritize
remediation. Organizations tend to determine their high-priority
applications via risk ranking [AA1.4]. Phase in a combination of
manual testing techniques against these high-priority applications
and rely on automated testing techniques for portfolio coverage.

Static and dynamic software testing techniques each provide unique
views into an application’s security posture. Static analysis can
look for issues inside the code the organization develops [CR1.4]
and inside third-party components [SR1.5]. Dynamic application
security tests [ST1.4] can uncover immediately exploitable issues
and help provide steps to reproduce attacks. In addition, QA groups
can help ensure that development streams are adhering to security
expectations. All these testing results assist with prioritization and
displaying impact to executive leadership.

Manual testing efforts generally start by bringing in third-party
assessors [PT1.1] on a regular cadence, either upon major
milestones or, more commonly, as a periodic out-of-band exercise
to assess the most critical applications. Even where an internal
penetration testing function exists, a third party periodically bringing
in a unique perspective will be beneficial.

Note that engineering groups will tend to favor empowering pipelines
and testers with automation and allow engineering leadership or
individual engineering teams to define some aspects of mandatory
testing and remediation timelines. It’s important to ensure static,
dynamic, and manual testing creates minimal unnecessary friction in
engineering processes.

Manage Discovered Defects
Unaddressed security defects are unmanaged risks. At first, there
will be a large backlog of discovered security defects that will have
to be bundled and passed through the risk exception process and
prioritized into the development backlog. After resolving the technical
debt, the ongoing defect management process should be designed
to deal with security defects as they are introduced to prevent their
release into production systems.

When security defects are discovered, it is the responsibility of the
SSI to make sure they are logged and tracked through to completion
[CMVM1.3]. Security defects can come from diverse sources,
including penetration testers [PT1.2], security tooling [CR1.4], and
operations [CMVM1.2] and ideally are logged in a single source of
truth for tracking purposes.

Publish and Promote the Process
With a strategy in hand, an understanding of the portfolio, and
security expectations set with engineering teams, the SSG
documents the SSDL [SM1.1] and begins collecting telemetry
[SM1.4]. The SSDL should include clearly documented goals,
roles, responsibilities, and activities. The most usable SSDLs
include process diagrams and provide contextual details for each
stakeholder. Many organizations seeking to consolidate ad hoc
efforts into an emerging SSI will find a variety of SSDLs in use
across engineering teams. In these cases, the new SSDL might be
a replacement for all such approaches, but it might also have some
parts that are abstract enough to account for all processes until they
can be rolled into the new approach. Publication of this process is
also a good time for the SSG to start a software security hub where
the SSG can disseminate knowledge about the process and about
software security as a whole [SR1.2].

In a top-down approach, organizations favor creating policy [CP1.3]
and standards [SR1.1] that can be followed and audited like any other
business process. Rather than documents, however, engineering
teams might favor implementing their part of an SSDL inside of
pipelines [SM3.4] and scripts [ST3.6] or by prescribing reusable
security blocks that meet expectations. Over time, the SSG will also
have to deliver some policy in the form of governance-as-code in
engineering pipelines [SM1.4].

While executives have likely been engaged to get the SSI to this point,
this is a good time to ensure that they’re being regularly kept up to
date with software security. Remember, executive teams need to
understand not only how the SSI is performing but also how other
firms are solving software security problems and the ramifications of
not investing in software security [SM1.3].

Progress to the Next Step in Your Journey
Usually done as part of moving to the mature stage, the SSG then
proceeds to scale the SSI. For example, this scaling might be done
by creating a champions program, improving the inventory capability
based on lessons learned, automating the basics, doing more
prevention, and then repeating. As the initiative matures and the
business grows, there will be new challenges for the SSG to address,
so it will be crucial to ensure that feedback loops are in place for the
program to consistently measure its progress and maturity.

60

FOR A MATURING SSI: HARMONIZING
OBJECTIVES
This section provides an expanded view of an SSI journey. With the
foundations established, SSG leaders shift their attention to scaling
risk-based controls across the entire software portfolio and enabling
development to find and fix issues early in the software lifecycle. The
SSI has likely reached the emerging stage across multiple capabilities
(see Figure 12) and is maturing specific aspects of its initiative. That
maturing includes both adding new activities and scaling existing
ones (see Figure 11). It especially includes building bridges between
various software security efforts in corporate and engineering
groups.

This section on maturing an SSI repeats some of the foundational
BSIMM activities from the “Starting an SSI: Getting to an Emerging
State” section. We do this because most organizations won’t treat
SSI creation as a waterfall process. Instead, they will, for example,
establish policy, set up a champions program, deploy defect
discovery tools, etc., in overlapping, incremental improvement cycles.
In addition, many organizations will determine in the emerging phase
that some activities can wait a bit while engaging in other, more
necessary, software security efforts. In either case, this is a good
place for a reminder to keep working on foundational activities.

Unify Structure and Consolidate Efforts
Ensure that there is a single SSI and provide the proper resources
for the owner tasked with shepherding the organization so the group
can meet risk management objectives. At this point, the SSI might
include multiple SSGs and owners (e.g., across major products or
business units), so working to harmonize these efforts must be a key
goal. Ensure that the SSI is supported by a full-time team—an SSG—
that can scale across the organization. Establishing this structure
might not involve hiring staff immediately, but it will likely entail
assembling a full-time team to implement key foundational activities
central to supporting the assurance objectives further defined and
institutionalized in policy [CP1.3], standards [SR1.1], and processes
[SM1.1].

The SSG will require a mix of skills, including technical security
knowledge, scripting and coding experience, and architectural skill.
As organizations migrate toward their view of DevSecOps, the SSG
might build its own software in the form of security automation,
defect discovery in CI/CD pipelines, and infrastructure- and
governance-as-code. SSGs often need to mentor, train, and work
directly with developers, so communication skills, teaching ability,
and practical knowledge are must-haves for at least some SSG
staff. Essentially, the SSG is a group of people—whether one person,
10, or 100—who must improve the security posture of the software
portfolio and all the processes that generate it, so management skills,
risk management perspectives, an ability to contribute to engineering
value streams, and an ability to break silos are critical success
factors.

Within engineering teams, we see individuals taking on leadership
roles such as product security engineer or security architect, while
possessing functional titles such as Site Reliability Engineer, DevOps
Engineer, or similar. Their responsibilities often include comparison
and selection of security tools, definition of secure design guidelines

and acceptable remediation actions, and implementation of
infrastructure-as-code for secure packaging, delivery, and operations.
Harmonizing leadership views across the SSG and engineering is a
critical step to success.

Expand Security Controls
Use existing knowledge to choose the important software security
activities to initiate, scale, or improve. This knowledge includes SSI
scope, compliance, technology stacks, and deployment models, as
well as the issues uncovered in defect discovery efforts. Common
activity choices are policy [CP1.3], SDLC checkpoint conditions
[SM1.4], testing [AA1.2, CR1.4, ST1.4, PT1.3, SR1.5], and training
[T1.7], which are typically built out in a quick-win approach. When
choosing and implementing new controls, it’s often easier to get buy-
in by showing adherence to well-known guidance (e.g., BSIMM, NIST
SSDF, regulators) or choosing security controls that align with general
industry guidance (e.g., OWASP, CWE, analysts). Ensure that activity
selection includes an appropriate mix of preventive [SR1.1, SFD2.1]
and detective (e.g., testing) controls to maximize positive impacts on
the organization’s risk posture.

Essentially, the SSG is a group of
people—whether one person, 10, or
100—who must improve the security
posture of the software portfolio.

Checklist for maturing SSIs
1.	 Unify structure and consolidate efforts. Formalize

organization, staffing, objectives, budgets, and
approach, then tell everybody about it.

2.	 Expand security controls. Increase program impact
through policy, testing, training, and other quick wins.

3.	 Engage development. Use security champions
to build bridges and harmonize software security
objectives.

4.	 Inventory and select in-scope software. Expand the
application inventory to include all software, not just
applications.

5.	 Enforce security basics everywhere. Use
automation to ensure that you run software only on
good systems (cloud or otherwise).

6.	 Integrate defect discovery and prevention. Use
automation and integration to scale and shift defect
discovery and prevention everywhere.

7.	 Upgrade incident response. Ensure that software
security experts are involved in all software security
events and improve the program from lessons
learned.

8.	 Repeat and improve. Growth does not happen in a
straight line. You will have to revisit, remeasure, and
replan multiple times.

61

Engage Development
As noted throughout this section, engineering teams are likely
already thinking about various aspects of security related to
design, configuration, infrastructure, and deployment. Engaging
development begins by creating mutual awareness of how the SSG
and development teams see the next steps in maturing security
efforts. Successfully engaging early on relies on bridge-building
and credentialing the SSG as competent in development culture,
toolchains, and technologies. It also includes building awareness
around which security capabilities constitute an SSDL and beginning
to determine how those capabilities are expected to be conducted.
Building consensus on what role each department will play in
improving capabilities over the next evolutionary cycle greatly
facilitates success.

To facilitate tool adoption, the SSG might dedicate some portion
of their efforts or build a team of security champions [SM2.3] to
serve as tool mentors to help development teams not only integrate
the tools but also triage and interpret results [CR1.7]. Although the
primary objective is to embed security leadership inside development,
these individuals also serve as both key points of contact and
interface points for the SSG to interact with engineering teams and
monitor progress. Because they are local to teams, champions can
facilitate defect management goals, such as tracking recurring issues
to drive remediation [PT1.2]. The SSG can also roll out software
security training [T2.9] tailored to the most common security defects
identified through AST, often cataloged by technology stack and
coding language.

Inventory and Select In-Scope Software
Take an enterprise-wide perspective when building a view into the
software portfolio. Engaging directly with application business
owners by, for example, using questionnaire-style data gathering is
a good start. It’s useful to focus on applications (with owners who
are responsible for risk management) as the initial unit of inventory
measure, but remember that many vital software components aren’t
applications (e.g., libraries, APIs, scripts, pipeline tests, infrastructure-
as-code). In addition to understanding application characteristics (e.g.,
programming language, architecture type such as web or mobile, the
revenue generated) as a view into risk, capture and maintain the same
information for all software. Focus on understanding where sensitive
data resides and flows (e.g., PII inventory) [CP2.1] along with the status
of active development projects.

Rather than taking an organizational structure and owner-based
view, engineering teams usually attempt to understand software
inventory by extracting it from the same tools they use to manage
their IT assets. They usually combine two or more of the following
approaches to software inventory creation:

•	 Discovery, import, and visualization of assets managed by the
organization’s cloud and data center virtualization management
consoles

•	 Scraping and extracting assets and tags from infrastructure-as-
code held in code repositories, as well as processing metadata
from container and other artifact registries

•	 Outside-in web and network scanning for publicly discoverable
assets, connectivity to known organizational assets, and related
ownership and administrative information

With a software inventory in hand, impose security requirements
using formalized risk-based approaches to cover as much of the
software portfolio as possible. Using simple criteria (e.g., software
size, regulatory constraints, internal-facing vs. external-facing, data
classification), assign a risk classification (e.g., high, medium, low)
to each application [AA1.4]. Define the initial set of software and
project teams with which to prototype security activities. Although
application risk classifications are often the primary driver, we have
observed firms using other information, such as whether a major
change in application architecture is being undertaken (e.g., shift to
a cloud-native architecture) or whether the software contains critical
code (e.g., cryptography, proprietary business logic). Firms find it
beneficial to include in the selection process some engineering teams
that are already doing some security activity organically.

Engineering teams might have a different idea of what in-scope
software means relative to the security efforts they already have
underway—if they’re working on one application, then that application
is likely to be their scope. When required to prioritize specific
applications’ components, we observe engineering teams using the
following as input:

•	 Teams conducting active new development or major refactoring
(velocity)

•	 Those services or data repositories to which specific development
or configuration requirements for security or privacy apply [CP1.1,
CP1.2] (regulation)

•	 Software that solves critical technical challenges or that adopts
key technologies (opportunity)

Prioritized software is then usually the target for test automation
[ST2.5], vulnerability discovery tooling, or security features [SFD1.1].

Enforce Security Basics Everywhere
Commonly observed today regardless of SSG age are basic security
controls enforced in hosts and networks [SE1.2] and in cloud
environments [SE1.3]. A common strength for organizations that
have good controls over the infrastructure assets they manage,
these basics are accomplished through a combination of IT
provisioning controls, written policy, prebuilt and tested golden
images, sensors and monitoring capabilities, server hardening and
configuration standards, infrastructure-as-code, and entire groups
dedicated to patching. As firms migrate private infrastructure to
cloud environments, organizations must carefully reestablish their
assurance-based controls to maintain and verify adherence to
security policy. To keep tabs on the growing number of virtual assets
created by engineering groups and their automation, organizations
often must deploy custom solutions [AM2.9] to overcome limitations
in a cloud provider’s ability to meet desired policy.

Governance and engineering teams often cooperate to build in
enforced security basics for infrastructure and cloud environments,
leveraging containers [SE2.5], infrastructure-as-code [SE2.2], and
orchestration [SE2.7]. Over time, these security basics expand to
include internal development environments, toolchains, deployment
automation, code repositories, and other important infrastructure.

62

Integrate Defect Discovery and Prevention
Initial defect discovery efforts tend to be one-off (by using centralized
commercial tools [CR1.2]) and to target the most critical applications,
with a plan to scale efforts over time. Scaling prioritization might be
selected for compliance or contractual reasons or because it applies
to a phase of the software lifecycle (e.g., shift everywhere to do threat
modeling at design time [AA1.1], composition analysis on software
repositories [SE3.8], SAST during development [CR1.4], DAST in
preproduction [ST1.4], and penetration testing on deployed software
[PT1.1, PT1.3]). The point is to automate and scale the chosen
defect discovery activities. However, scaling through automation
and integration must come without disrupting CI/CD pipelines (e.g.,
due to tools having long execution times), without generating large
volumes of perceived false positives, and without impeding delivery
velocity (e.g., through opaquely breaking builds or denying software
promotion) except under clear or agreed-upon circumstances.

In addition to defect discovery, engineering teams might favor
prevention controls they can apply to software directly in the form
of security features [SFD1.1]. These controls can take the form of
microservices (e.g., authentication or other identity and access
management) [SE2.5], common product libraries (e.g., encryption)
[SFD2.1], or even infrastructure security controls (e.g., controlling
scope of access to production secrets through vault technologies).

Some engineering groups have taken steps to tackle the prevention
of certain classes of vulnerability in a wholesale manner [CMVM3.1],
using development frameworks that preclude them. Ask security-
minded engineers for their opinion about framework choices and
empower them to incorporate their understanding of security
features and security posture tradeoffs.

Upgrade Incident Response
Ensure that defined incident response processes include SSG
representation [CMVM1.1]. Determining whether an incident has
software security roots requires specific skills that are not often
found in traditional IT groups. Work with engineering teams,
especially DevOps engineers, to help make the connections between
those events and alerts raised in production and the associated
artifacts, pipelines, repositories, and responsible teams. This
traceability allows these groups to effectively prioritize security
issues on which the SSG will focus. Feedback from the field on what
is happening greatly enhances the top N lists ([AM3.5, CR2.7]) that
many organizations use to help establish priorities.

Security engineers who are in development teams and more familiar
with application logic might be able to facilitate instructive monitoring
and logging. They can coordinate with DevOps engineers to generate
in-application defenses that are tailored for business logic and expected
behavior, therefore likely being more effective than, for example, WAF
rules. Introducing such functionality will in turn provide richer feedback
and allow a more tailored response to application behavior [SE3.3].

Organizations deploying cloud-native applications using orchestration
might respond to incidents (or to data indicating imminent
incidents) with an increase in logging, perhaps by adjusting traffic
to the distribution of image types in production. Much of this is
possible only with embedded security engineers who are steeped
in the business context of a development team and have good
relationships with that team’s DevOps engineers; satellite members

(security champions) can be a good resource for these individuals.
Under these circumstances, incident response moves at the speed
of a well-practiced single team [CMVM2.1] rather than that of an
interdepartmental playbook.

Repeat and Improve
As noted earlier, working through activity growth for emerging and
maturing SSIs probably won’t happen in a straight line. There’ll be
changes in priorities, resources, and responsibilities, along with
changes in attackers, attacks, technologies, and everything else. It’s
necessary to take time periodically to determine how well the SSI is
performing against business objectives and adjust as necessary.

As a reminder, organizations rarely move their entire SSI from
emerging to enabling all at once. Different parts of the SSI will shift
between emerging, maturing, and enabling a few times over the years
with different timing that SSG leaders will need to plan for.

FOR AN ENABLING SSI: DATA-DRIVEN
IMPROVEMENTS
Achieving software security scale—of expertise, portfolio coverage,
tool integration, vulnerability discovery accuracy, process
consistency, etc.—remains a top priority. However, firms often scale
one or two capabilities (e.g., defect discovery, training) but fail to
scale others (e.g., AA, vendor management). Given mature activities,
there’s a treasure trove of data to be harvested and included in KPI
and KRI reporting dashboards. But then executives start asking the
very difficult questions: Are we getting better? Is our implementation
working well? Where are we lagging? How can we go faster with less
overhead? What’s our message to the Board? The efficacy of an SSI
will be supported by ongoing data collection and metrics reporting
that seeks to answer such questions [SM3.3].

Progress Isn’t a Straight Line
As mentioned earlier, organizations don’t always progress from
maturing to enabling in one try or on a straight path, some SSI
capabilities might be enabling while others are still emerging or
maturing. Based on our experience, firms with some portion of their
SSI operating in an enabling state have likely been in existence for
longer than three years. Although we don’t have enough data to
generalize enabling SSIs, we do see common themes for those that
strive to reach this state:

•	 Top N risk reduction. Everyone relentlessly identifies and closes
top N weaknesses, placing emphasis on obtaining visibility into
all sources of vulnerability, whether in-house developed code,
open source code [SR2.7], vendor code [SR3.2], toolchains, or any
associated environments and processes [SE1.2, SE1.3]. These top
N weaknesses are most useful when specific to the organization,
evaluated at least annually, and tied to metrics to prioritize SSI
efforts that improve risk posture.

•	 Tool customization. Security leaders place a concerted effort
on tuning tools (e.g., customization for static analysis, fuzzing,
penetration testing) to improve integration, accuracy, consistency,
and depth of analysis [CR2.6, ST2.6, AM3.2, PT3.2]. Customization
focuses not only on improving result fidelity and applicability
across the portfolio but also on pipeline integration and timely
execution, improving ease of use for everyone.

63

•	 Feedback loops. Loops are created between SSDL activities to
improve effectiveness as deliverables from activities ebb and
flow with each other. For example, an expert in QA might leverage
AA results when creating security test cases [ST3.3]. Likewise,
feedback from the field might be used to drive SSDL improvement
through enhancements to a hardening standard [CMVM3.2]. The
concept of routinely conducting blameless postmortems to find
root causes and drive remediation seems to be gaining ground in
some firms.

•	 Data-driven governance. The more mature groups instrument
everything to collect data that in turn becomes metrics for
measuring SSI efficiency and effectiveness against KRIs and KPIs
[SM3.3]. As an example, a metric such as defect density might
be leveraged to track performance of individual business units
and application teams. Metrics choices are very specific to each
organization and also evolve over time.

Achieving software security scale—
of expertise, portfolio coverage, tool
integration, vulnerability discovery
accuracy, process consistency, etc.—
remains a top priority.

Push for Agile-Friendly SSIs
In recent years, we’ve observed governance-oriented teams—often
out of necessity to remain in sync with engineering teams—evolving
to become more Agile-friendly:

•	 Putting “Sec” in DevOps is becoming a mission-critical objective.
SSG leadership routinely partners with IT, cloud, development, QA,
and operations leadership to ensure that the SSI mission aligns
with DevOps values and principles.

•	 SSG leaders realize they need in-house talent with coding
expertise to improve not only their credibility with engineering but
also their understanding of modern software delivery practices.
Job descriptions for SSG roles now mention experience and
qualification requirements such as cloud, mobile, containers,
and orchestration security, as well as coding. We expect this
list to grow as other topics become more mainstream, such
as architecture and testing requirements around serverless

computing and single-page application approaches.

•	 To align better with DevOps values (e.g., agility, collaboration,
responsiveness), SSG leaders are beginning to replace traditional
people-driven activities with people-optional, pipeline-driven
automated tasks. This often comes in the form of automated
security tool execution, bugs filed automatically to defect
notification channels, builds flagged for critical issues, and
automated triggers to respond to real-time operational events.

•	 Scaling outreach and expertise through the implementation of an
ever-growing satellite is viewed as a short-term rather than long-
term goal. Organizations report improved responsiveness and
engagement as part of DevOps initiatives when they’ve localized
security expertise in the engineering teams. Champions are also
becoming increasingly sophisticated in building reusable artifacts
(e.g., security sensors) in development and deployment streams
to directly support SSI activities.

•	 SSG leaders are partnering with operations to implement
application-layer production monitoring and automated
mechanisms for responding to security events. There is a high
degree of interest in consuming real-time security events for data
collection and analysis to produce useful metrics.

In summary, engineering teams have likely taken an enabling
approach from the beginning. Their security efforts are contributions
from engineers who deliver software early and often, constantly
improving it rather than relying on explicit strategy backed by
top-down policies. They make their software available to everyone to
prevent future issues and use evangelism to encourage uptake. They
review production failures and make changes, often with automation,
to their toolchains and processes. That said, perceptions of business
and technical risk between corporate and engineering groups often
differ in substantial ways. Bringing the groups together to share
responsibilities for software security, as well as definitions of and
goals for needed risk management, while enabling broad stakeholder
productivity is a primary goal for any SSI.

64

C. DETAILED VIEW OF THE BSIMM
FRAMEWORK

The BSIMM framework and data model evolve over
time to accurately represent actual software security
practices. Understanding these changes will help you set
strategic directions for your own SSI.

In Part 5, we introduced the BSIMM framework. Here, we explore it in
more detail, including the methodology of how we created the model,
how it evolved over time, and how we updated it for BSIMM14.

As a descriptive model, the only goal of the BSIMM is to observe
and report. We like to say we visited many restaurants to see what
was happening and observed that “there are three chicken eggs in
an omelet.” Note that the BSIMM does not extrapolate to say, “all
omelets must have three eggs,” “only chicken eggs make acceptable
omelets,” “omelets must be eaten every day,” or any other value
judgments. We offer simple observations, simply reported.

Of course, during our assessment efforts across hundreds of
organizations, we also make qualitative observations about how SSIs
are evolving and report many of those as trends, insights, analysis,
and other topical discussions both in this document and among the
BSIMM participants.

Our “just the facts” approach is hardly novel in science and
engineering, but in the realm of software security, it has not
previously been applied at this scale. Other work around SSI
modeling has either described the experience of a single organization
or offered prescriptive guidance based on a combination of personal
experience and opinion.

During our assessment efforts across
hundreds of organizations, we make
qualitative observations about how
SSIs are evolving and report many of
those as insights, analysis, and other
discussions in this document.

THE BSIMM SKELETON
The BSIMM skeleton provides a way to view the model at a glance
and is useful when assessing an SSI. The skeleton is shown in
Figure 13, organized by domains and practices. More complete
descriptions of the activities and examples are available in Part 6 of
this document.

CREATING BSIMM14 FROM BSIMM13
BSIMM14 includes updated activity descriptions, data from firms
in multiple vertical markets, and a longitudinal study. For BSIMM14,
we added 23 firms and removed 23, resulting in a data pool of 130
firms. In addition, in the time since we launched BSIMM13, 8 firms
conducted reassessments to update their scorecards, and we
assessed additional business units for two firms.

As shown below, we used the resulting observation counts to refine
activity placement in the framework, which resulted in moving seven
activities to different levels. In addition, we added one newly observed
activity, resulting in a total of 126 activities in BSIMM14:

•	 [T3.5] Provide expertise via open collaboration channels became
[T2.12]

•	 [AM2.2] Create technology-specific attack patterns became
[AM3.4]

•	 [AM2.5] Maintain and use a top N possible attacks list became
[AM3.5]

•	 [AM3.1] Have a research group that develops new attack methods
became [AM2.8]

•	 [AM3.3] Monitor automated asset creation became [AM2.9]

•	 [SR2.4] Identify open source became [SR1.5]

•	 [CMVM2.2] Track software defects found in operations through
the fix process became [CMVM1.3]

•	 [SE3.9] Protect integrity of development toolchains was added to
the model

65

GOVERNANCE

STRATEGY & METRICS COMPLIANCE & POLICY TRAINING

[SM1.1] Publish process and evolve as
necessary. [CP1.1] Unify regulatory pressures. [T1.1] Conduct software security awareness

training.

[SM1.3] Educate executives on software
security. [CP1.2] Identify privacy obligations. [T1.7] Deliver on-demand individual training.

[SM1.4] Implement security checkpoints and
associated governance. [CP1.3] Create policy. [T1.8] Include security resources in

onboarding.

[SM2.1] Publish data about software security
internally and use it to drive change. [CP2.1] Build a PII inventory. [T2.5]

Enhance satellite (security
champions) through training and
events.

[SM2.2] Enforce security checkpoints and
track exceptions. [CP2.2] Require security sign-off for

compliance-related risk. [T2.8] Create and use material specific to
company history.

[SM2.3] Create or grow a satellite (security
champions). [CP2.3] Implement and track controls for

compliance. [T2.9] Deliver role-specific advanced
curriculum.

[SM2.6] Require security sign-off prior to
software release. [CP2.4] Include software security SLAs in all

vendor contracts. [T2.10] Host software security events.

[SM2.7] Create evangelism role and perform
internal marketing. [CP2.5] Ensure executive awareness of

compliance and privacy obligations. [T2.11] Require an annual refresher.

[SM3.1] Use a software asset tracking
application with portfolio view. [CP3.1] Document a software compliance

story. [T2.12] Provide expertise via open
collaboration channels.

[SM3.2] Make SSI efforts part of external
marketing. [CP3.2] Ensure compatible vendor policies. [T3.1] Reward progression through

curriculum.

[SM3.3] Identify metrics and use them to drive
resourcing. [CP3.3] Drive feedback from software

lifecycle data back to policy. [T3.2] Provide training for vendors and
outsourced workers.

[SM3.4] Integrate software-defined lifecycle
governance. [T3.6]

Identify new satellite members
(security champions) through
observation.

[SM3.5] Integrate software supply chain risk
management.

INTELLIGENCE

ATTACK MODELS SECURITY FEATURES & DESIGN STANDARDS & REQUIREMENTS

[AM1.2] Use a data classification scheme for
software inventory. [SFD1.1] Integrate and deliver security

features. [SR1.1] Create security standards.

[AM1.3] Identify potential attackers. [SFD1.2] Application architecture teams
engage with the SSG. [SR1.2] Create a security portal.

[AM1.5] Gather and use attack intelligence. [SFD2.1] Leverage secure-by-design
components and services. [SR1.3] Translate compliance constraints to

requirements.

[AM2.1] Build attack patterns and abuse
cases tied to potential attackers. [SFD2.2] Create capability to solve difficult

design problems. [SR1.5] Identify open source.

[AM2.6] Collect and publish attack stories. [SFD3.1] Form a review board to approve and
maintain secure design patterns. [SR2.2] Create a standards review process.

[AM2.7] Build an internal forum to discuss
attacks. [SFD3.2] Require use of approved security

features and frameworks. [SR2.5] Create SLA boilerplate.

[AM2.8] Have a research group that develops
new attack methods. [SFD3.3] Find and publish secure design

patterns from the organization. [SR2.7] Control open source risk.

[AM2.9] Monitor automated asset creation. [SR3.2] Communicate standards to vendors.

[AM3.2] Create and use automation to mimic
attackers. [SR3.3] Use secure coding standards.

[AM3.4] Create technology-specific attack
patterns. [SR3.4] Create standards for technology

stacks.

[AM3.5] Maintain and use a top N possible
attacks list.

66

SSDL TOUCHPOINTS

ARCHITECTURE ANALYSIS CODE REVIEW SECURITY TESTING

[AA1.1] Perform security feature review. [CR1.2] Perform opportunistic code review. [ST1.1] Perform edge/boundary value
condition testing during QA.

[AA1.2] Perform design review for high-risk
applications. [CR1.4] Use automated code review tools. [ST1.3] Drive tests with security requirements

and security features.

[AA1.4] Use a risk methodology to rank
applications. [CR1.5] Make code review mandatory for all

projects. [ST1.4] Integrate opaque-box security tools
into the QA process.

[AA2.1] Perform architecture analysis using a
defined process. [CR1.7] Assign code review tool mentors. [ST2.4] Drive QA tests with AST results.

[AA2.2] Standardize architectural
descriptions. [CR2.6] Use custom rules with automated

code review tools. [ST2.5] Include security tests in QA
automation.

[AA2.4] Have SSG lead design review efforts. [CR2.7] Use a top N bugs list (real data
preferred). [ST2.6] Perform fuzz testing customized to

application APIs.

[AA3.1] Have engineering teams lead AA
process. [CR2.8] Use centralized defect reporting to

close the knowledge loop. [ST3.3] Drive tests with design review results.

[AA3.2] Drive analysis results into standard
design patterns. [CR3.2] Build a capability to combine AST

results. [ST3.4] Leverage code coverage analysis.

[AA3.3] Make the SSG available as an AA
resource or mentor. [CR3.3] Create capability to eradicate bugs. [ST3.5] Begin to build and apply adversarial

security tests (abuse cases).

[CR3.4] Automate malicious code detection. [ST3.6] Implement event-driven security
testing in automation.

[CR3.5] Enforce secure coding standards.

DEPLOYMENT

PENETRATION TESTING SOFTWARE ENVIRONMENT CONFIGURATION MANAGEMENT &
VULNERABILITY MANAGEMENT

[PT1.1] Use external penetration testers to
find problems. [SE1.1] Use application input monitoring. [CMVM1.1] Create or interface with incident

response.

[PT1.2] Feed results to the defect
management and mitigation system. [SE1.2] Ensure host and network security

basics are in place. [CMVM1.2]
Identify software defects found in
operations monitoring and feed them
back to engineering.

[PT1.3] Use penetration testing tools
internally. [SE1.3] Implement cloud security controls. [CMVM1.3] Track software defects found in

operations through the fix process.

[PT2.2] Penetration testers use all available
information. [SE2.2] Define secure deployment

parameters and configurations. [CMVM2.1] Have emergency response.

[PT2.3] Schedule periodic penetration tests
for application coverage. [SE2.4] Protect code integrity. [CMVM2.3] Develop an operations software

inventory.

[PT3.1] Use external penetration testers to
perform deep-dive analysis. [SE2.5] Use application containers to support

security goals. [CMVM3.1] Fix all occurrences of software
defects found in operations.

[PT3.2] Customize penetration testing tools. [SE2.7] Use orchestration for containers and
virtualized environments. [CMVM3.2] Enhance the SSDL to prevent

software defects found in operations.

[SE3.2] Use code protection. [CMVM3.3] Simulate software crises.

[SE3.3] Use application behavior monitoring
and diagnostics. [CMVM3.4] Operate a bug bounty program.

[SE3.6] Create bills of materials for deployed
software. [CMVM3.5] Automate verification of operational

infrastructure security.

[SE3.8] Perform application composition
analysis on code repositories. [CMVM3.6] Publish risk data for deployable

artifacts.

[SE3.9] Protect integrity of development
toolchains. [CMVM3.7] Streamline incoming responsible

vulnerability disclosure.

[CMVM3.8] Do attack surface management for
deployed applications.

FIGURE 13. THE BSIMM SKELETON. Within the SSF, the 126 activities are organized into 12 practices within the four BSIMM domains.

67

As concrete examples of how the BSIMM functions as an
observational model, consider the activities that are now SM3.3 and
SR3.3, which both started as level 1 activities. The BSIMM1 activity
[SM1.5 Identify metrics and use them to drive resourcing] became
SM2.5 in BSIMM3 and is now SM3.3 due to its observation rate
remaining fairly static while other activities in the practice became
observed much more frequently. Similarly, the BSIMM1 activity [SR1.4
Use secure coding standards] became SR2.6 in BSIMM6 and is now
SR3.3 as its observation rate has decreased.

TABLE 5. NEW ACTIVITIES. Some activities have seen exceptional growth (highlighted in orange) in observation counts, likely demonstrating their widespread
utility. [SE3.7], highlighted in gray, is the first activity to migrate from level 3 (very uncommon) to level 1 (common).

OBSERVATIONS

ACTIVITY BSIMM7 BSIMM8 BSIMM9 BSIMM10 BSIMM11 BSIMM12 BSIMM13 BSIMM14
SE3.4 (now SE2.5) 0 4 11 14 31 44 52 63

SE3.5 (now SE2.7) 0 5 22 33 42 47

SE3.6 0 3 12 14 18 22

SE3.7 (now SE1.3) 0 9 36 59 79 92

SM3.4 0 1 6 5 8

AM3.3 (now AM2.9) 0 4 6 11 17

CMVM3.5 0 8 10 13 16

ST3.6 0 2 3 6

CMVM3.6 0 0 3 3

CMVM3.7 0 20 35

SM3.5 0 0

SE3.8 0 2

CMVM3.8 0 0

SE3.9 0

In BSIMM13, we had the first activity that migrated from level 3
to level 1—[SE1.3 Implement cloud security controls], which was
introduced in BSIMM9. While the relative growth of [SE2.5 Use
application containers to support security goals] has slowed down,
it is one of the potential candidates to migrate from level 3 to level 1
over the next couple of years. See Table 5 for the observation growth
in activities that were added since BSIMM7.

FIGURE 14. NUMBER OF OBSERVATIONS FOR [AA3.2] AND [CR3.5] OVER TIME. [AA3.2 Drive analysis results into standard design patterns] had zero
observations during BSIMM7 and BSIMM8, while [CR3.5 Enforce secure coding standards] decreased to zero observations from BSIMM8 to BSIMM12 (the number
of observations increased back to four in BSIMM14). Currently, there are three activities with zero observations, one of which was added in BSIMM14.

[AA3.2] [CR3.5]

BSIMM14BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7
0

5

1

6

2

7

3

8

4

68

WHERE DO OLD ACTIVITIES GO?
We continue to ponder the question, “Where do activities
go when no one does them anymore?” In addition to
[CR3.5 Enforce secure coding standards] (shown in Figure
14), we’ve noticed that the observation rate for other
seemingly useful activities has decreased significantly in
recent years:

•	 [T3.6 Identify new satellite members (security champions)
through observation] observed in 11 of 51 firms in BSIMM4 but
only in eight of 130 firms in BSIMM14

•	 [SFD3.3 Find and publish secure design patterns from the
organization] observed in 14 of 51 firms in BSIMM4 but only in
nine of 130 firms in BSIMM14

•	 [SR3.3 Use secure coding standards] observed in 23 of 78 firms
in BSIMM6 but only in 19 of 130 firms in BSIMM14

We believe there are two primary reasons why
observations for some activities have decreased toward
zero over time. First, some activities have become part
of the culture and drive different behavior—for example,
choosing satellite members might become a more
organic part of the SSDL without requiring extra effort in
identifying satellite members [T3.6 Identify new satellite
members (security champions) through observation] to
grow that team [SM2.3 Create or grow a satellite (security
champions)]. Second, some activities don’t yet fit tightly

with the evolving engineering culture, and the activity
effort currently causes too much friction. For example,
continuously going to engineering teams to find secure
design patterns [SFD3.3 Find and publish secure design
patterns from the organization] might unacceptably delay
key development processes.

It might also be the case that evolving SSI and DevOps
architectures are changing the way some activities
are getting done. If an organization’s use of purpose-
built architectures, development kits, and libraries is
sufficiently consistent, perhaps it’s less necessary to lean
on prescriptive coding standards [CR3.5 Enforce secure
coding standards] as a measure of acceptable code.

As a point of culture-driven contrast, we see significant
increases in observation counts for activities such as [SE1.3
Implement cloud security controls], [SE2.5 Use application
containers to support security goals], and [SE2.7 Use
orchestration for containers and virtualized environments],
likely for similar reasons that we see lower counts for the
other activities above. The engineering culture has shifted
to be more self-service and to include increased telemetry
that produces more data for everyone to use. We keep
a close watch on the BSIMM data pool and will make
adjustments as needed, which might include dropping an
activity from the model.

MODEL CHANGES OVER TIME
Being a unique, real-world reflection of actual software security practices, the BSIMM naturally changes over time. While each release of the
BSIMM captures the current dataset and provides the most current guidance, reflection upon past changes can help clarify the ebb and flow of
specific activities. Table 6 shows the activity moves, adds, and deletes that have occurred since the BSIMM’s creation.

CHANGES FOR BSIMM14 (126 ACTIVITIES)

•	 [T3.5] Provide expertise via open collaboration channels became [T2.12]
•	 [AM2.2] Create technology-specific attack patterns became [AM3.4]
•	 [AM2.5] Maintain and use a top N possible attacks list became [AM3.5]
•	 [AM3.1] Have a research group that develops new attack methods became [AM2.8]
•	 [AM3.3] Monitor automated asset creation became [AM2.9]
•	 [SR2.4] Identify open source became [SR1.5]
•	 [CMVM2.2] Track software defects found in operations through the fix process became

[CMVM1.3]
•	 [SE3.9] Protect integrity of development toolchains added to the model

CHANGES FOR BSIMM13 (125 ACTIVITIES)

•	 T3.3 Host software security events became T2.10
•	 T3.4 Require an annual refresher became T2.11
•	 SR3.1 Control open source risk became SR2.7
•	 AA1.3 Have SSG lead design review efforts became AA2.4
•	 CR1.6 Use centralized defect reporting to close the knowledge loop became CR2.8
•	 SE2.6 Implement cloud security controls became SE1.3
•	 SM3.5 Integrate software supply chain risk management added to the model
•	 SE3.8 Perform application composition analysis on code repositories added to the model
•	 CMVM3.8 Do attack surface management for deployed applications added to the model

69

CHANGES FOR BSIMM12 (122 ACTIVITIES)

•	 SM1.2 Create evangelism role and perform internal marketing became SM2.7
•	 T1.5 Deliver role-specific advanced curriculum became T2.9
•	 ST2.1 Integrate black-box security tools into the QA process became ST1.4
•	 SE3.5 Use orchestration for containers and virtualized environments became SE2.7
•	 CMVM3.7 Streamline incoming responsible vulnerability disclosure added to the model

CHANGES FOR BSIMM11 (121 ACTIVITIES)

•	 T2.6 Include security resources in onboarding became T1.8
•	 CR2.5 Assign tool mentors became CR1.7
•	 SE3.4 Use application containers to support security goals became SE2.5
•	 SE3.7 Ensure cloud security basics became SE2.6
•	 ST3.6 Implement event-driven security testing in automation added to the model
•	 CMVM3.6 Publish risk data for deployable artifacts added to the model

CHANGES FOR BSIMM10 (119 ACTIVITIES)

•	 T1.6 Create and use material specific to company history became T2.8
•	 SR2.3 Create standards for technology stacks moves to become SR3.4
•	 SM3.4 Integrate software-defined lifecycle governance added to the model
•	 AM3.3 Monitor automated asset creation added to the model
•	 CMVM3.5 Automate verification of operational infrastructure security added to the model

CHANGES FOR BSIMM9 (116 ACTIVITIES)

•	 SM2.5 Identify metrics and use them to drive resourcing became SM3.3
•	 SR2.6 Use secure coding standards became SR3.3
•	 SE3.5 Use orchestration for containers and virtualized environments added to the model
•	 SE3.6 Enhance application inventory with operations bill of materials added to the model
•	 SE3.7 Ensure cloud security basics added to the model

CHANGES FOR BSIMM8 (113 ACTIVITIES)
•	 T2.7 Identify new satellite through training became T3.6
•	 AA2.3 Make SSG available as AA resource or mentor became AA3.3

CHANGES FOR BSIMM7 (113 ACTIVITIES)

•	 AM1.1 Maintain and use a top N possible attacks list became AM2.5
•	 AM1.4 Collect and publish attack stories became AM2.6
•	 AM1.6 Build an internal forum to discuss attacks became AM2.7
•	 CR1.1 Use a top N bugs list became CR2.7
•	 CR2.2 Enforce coding standards became CR3.5
•	 SE3.4 Use application containers to support security goals added to the model

CHANGES FOR BSIMM6 (112 ACTIVITIES)

•	 SM1.6 Require security sign-off prior to software release became SM2.6
•	 SR1.4 Use secure coding standards became SR2.6
•	 ST3.1 Include security tests in QA automation became ST2.5
•	 ST3.2 Perform fuzz testing customized to application APIs became ST2.6

CHANGES FOR BSIMM-V (112 ACTIVITIES)

•	 SFD2.3 Find and publish mature design patterns from the organization became SFD3.3
•	 SR2.1 Communicate standards to vendors became SR3.2
•	 CR3.1 Use automated tools with tailored rules became CR2.6
•	 ST2.3 Begin to build and apply adversarial security tests (abuse cases) became ST3.5
•	 CMVM3.4 Operate a bug bounty program added to the model

70

CHANGES FOR BSIMM4 (111 ACTIVITIES)

•	 T2.1 Deliver role-specific advanced curriculum became T1.5
•	 T2.2 Company history in training became T1.6
•	 T2.4 Deliver on-demand individual training became T1.7
•	 T1.2 Include security resources in onboarding became T2.6
•	 T1.4 Identify new satellite members through training became T2.7
•	 T1.3 Establish SSG office hours became T3.5
•	 AM2.4 Build an internal forum to discuss attacks became AM1.6
•	 CR2.3 Make code review mandatory for all projects became CR1.5
•	 CR2.4 Use centralized reporting to close the knowledge loop became CR1.6
•	 ST1.2 Share security results with QA became ST2.4
•	 SE2.3 Use application behavior monitoring and diagnostics became SE3.3
•	 CR3.4 Automate malicious code detection added to the model
•	 CMVM3.3 Simulate software crises added to the model

CHANGES FOR BSIMM3 (109 ACTIVITIES)

•	 SM1.5 Identify metrics and use them to drive resourcing became SM2.5
•	 SM2.4 Require security sign-off became SM1.6
•	 AM2.3 Gather and use attack intelligence became AM1.5
•	 ST2.2 Drive tests with security requirements and security features became ST1.3
•	 PT2.1 Use pen testing tools internally became PT1.3

CHANGES FOR BSIMM2 (109 ACTIVITIES)

•	 T2.3 Require an annual refresher became T3.4
•	 CR2.1 Use automated tools became CR1.4
•	 SE2.1 Use code protection became SE3.2
•	 SE3.1 Use code signing became SE2.4
•	 CR1.3 removed from the model

CHANGES FOR BSIMM1 (110 ACTIVITIES) •	 Added 110 activities

TABLE 6. ACTIVITY CHANGES OVER TIME. This table allows for historical review of how BSIMM activities have been added, moved, and deleted since inception.

71

D. DATA: BSIMM14

Every organization wants to do software security more
effectively and efficiently. You can use this information
to understand what the BSIMM participants are doing
today and how those efforts have evolved over time,
then plan your own SSI changes.

The BSIMM data yields very interesting analytical results, as shown
throughout this document. Figure 17 shows the highest-resolution
observation data that is published. Organizations can use this
information to note how often we observe each activity across all 130
participants to help plan their next areas of focus. Activities that are
broadly popular will likely benefit your organization as well.

In Figure 17, we also identified the most common activity in each
practice (highlighted in orange). To provide some perspective on what
“most common” means, although T1.1 is the most common activity
in the Training practice with 76 observations, Table 7 shows that it
isn’t in the top 20 activities across all the practices.

To provide another view into this data, we created a spider chart
by noting the percentage of activities observed for each practice
per BSIMM participant (normalized scale), then averaging these
values over the group of 130 firms to produce 12 numbers (one for
each practice). The resulting spider chart (Figure 15) plots these
values on spokes corresponding to the 12 BSIMM practices. Note
that performing a larger number of activities is often a sign of SSI
maturity. Other interesting analyses are possible, of course, such as
those at www.ieeexplore.ieee.org/document/9732894.

The range of observed scores in the current data pool is 12 for the
lower score and 100 for the higher score, indicating a wide range of
SSI maturity levels in the BSIMM14 data.

AGE-BASED PROGRAM CHANGES
Figure 16 shows the distribution of scores among the population
compared to Training, Attack Models, and Security Testing of 130
participating firms. To create this graph, we divided the scores into
six bins that are then further divided by the assessment iteration
(round 1, round 2, and round 3+). As you can see, the scores
represent a slightly skewed bell curve. We also plotted the average
age of the firms’ SSIs in each bin as a horizontal line. In general, firms
where more BSIMM activities were observed have older SSIs and are
more likely to have performed multiple BSIMM measurements.

FIGURE 15. ALLFIRMS SPIDER CHART. This diagram shows the average
percentage of normalized observations collectively reached in each practice
by the 130 BSIMM14 firms. Across these firms, the normalized observations
are higher in the Compliance & Policy, Standards & Requirements, and
Penetration Testing practices compared to Training, Attack Models, and
Security Testing.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

AllFirms (130)

FIGURE 16. BSIMM SCORE DISTRIBUTION. Assessment scores most
frequently fall into the 31 to 40 range in BSIMM14, vs. 41 to 50 in BSIMM13
(not shown), with an average SSG age of 4.4 years. In general, firms that
mature and continue to use the BSIMM as a measurement tool over time (e.g.,
round 2, round 3+), tend to have higher scores. Refer to Appendix F for more
details on how SSIs evolve over multiple measurements.

0

5

10

15

20

25

30

35

61-12551-6041-5031-4021-300-20

Assessment Iteration 1 Assessment Iteration 2
Assessment Iteration 3+ Average Age

http://www.ieeexplore.ieee.org/document/9732894

72

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM14

FIRMS
(OUT OF 130)

BSIMM14
FIRMS

(PERCENTAGE)
ACTIVITY

BSIMM14
FIRMS

(OUT OF 130)

BSIMM14
FIRMS

(PERCENTAGE)
ACTIVITY

BSIMM14
FIRMS

(OUT OF 130)

BSIMM14
FIRMS

(PERCENTAGE)
ACTIVITY

BSIMM14
FIRMS

(OUT OF 130)

BSIMM14
FIRMS

(PERCENTAGE)

STRATEGY & METRICS ATTACK MODELS ARCHITECTURE ANALYSIS PENETRATION TESTING
[SM1.1] 101 77.69% [AM1.2] 73 56.15% [AA1.1] 108 83.08% [PT1.1] 114 87.69%

[SM1.3] 80 61.54% [AM1.3] 49 37.69% [AA1.2] 59 45.38% [PT1.2] 102 78.46%

[SM1.4] 118 90.77% [AM1.5] 81 62.31% [AA1.4] 63 48.46% [PT1.3] 85 65.38%

[SM2.1] 73 56.15% [AM2.1] 16 12.31% [AA2.1] 35 26.92% [PT2.2] 42 32.31%

[SM2.2] 71 54.62% [AM2.6] 16 12.31% [AA2.2] 34 26.15% [PT2.3] 55 42.31%

[SM2.3] 71 54.62% [AM2.7] 15 11.54% [AA2.4] 40 30.77% [PT3.1] 30 23.08%

[SM2.6] 77 59.23% [AM2.8] 20 15.38% [AA3.1] 20 15.38% [PT3.2] 21 16.15%

[SM2.7] 62 47.69% [AM2.9] 16 12.31% [AA3.2] 8 6.15%

[SM3.1] 32 24.62% [AM3.2] 8 6.15% [AA3.3] 17 13.08%

[SM3.2] 23 17.69% [AM3.4] 13 10.00%

[SM3.3] 32 24.62% [AM3.5] 11 8.46%

[SM3.4] 8 6.15%

[SM3.5] 0 0.00%

COMPLIANCE & POLICY SECURITY FEATURES
& DESIGN CODE REVIEW SOFTWARE

ENVIRONMENT
[CP1.1] 103 79.23% [SFD1.1] 100 76.92% [CR1.2] 84 64.62% [SE1.1] 88 67.69%

[CP1.2] 114 87.69% [SFD1.2] 95 73.08% [CR1.4] 112 86.15% [SE1.2] 113 86.92%

[CP1.3] 101 77.69% [SFD2.1] 45 34.62% [CR1.5] 74 56.92% [SE1.3] 92 70.77%

[CP2.1] 58 44.62% [SFD2.2] 70 53.85% [CR1.7] 55 42.31% [SE2.2] 68 52.31%

[CP2.2] 63 48.46% [SFD3.1] 18 13.85% [CR2.6] 26 20.00% [SE2.4] 45 34.62%

[CP2.3] 72 55.38% [SFD3.2] 22 16.92% [CR2.7] 20 15.38% [SE2.5] 63 48.46%

[CP2.4] 62 47.69% [SFD3.3] 9 6.92% [CR2.8] 28 21.54% [SE2.7] 47 36.15%

[CP2.5] 80 61.54% [CR3.2] 17 13.08% [SE3.2] 18 13.85%

[CP3.1] 38 29.23% [CR3.3] 5 3.85% [SE3.3] 18 13.85%

[CP3.2] 34 26.15% [CR3.4] 3 2.31% [SE3.6] 22 16.92%

[CP3.3] 15 11.54% [CR3.5] 4 3.08% [SE3.8] 2 1.54%

[SE3.9] 0 0.00%

TRAINING STANDARDS &
REQUIREMENTS SECURITY TESTING CONFIG. MGMT.

& VULN. MGMT.
[T1.1] 76 58.46% [SR1.1] 94 72.31% [ST1.1] 110 84.62% [CMVM1.1] 117 90.00%

[T1.7] 64 49.23% [SR1.2] 103 79.23% [ST1.3] 91 70.00% [CMVM1.2] 95 73.08%

[T1.8] 59 45.38% [SR1.3] 98 75.38% [ST1.4] 62 47.69% [CMVM1.3] 98 75.38%

[T2.5] 44 33.85% [SR1.5] 101 77.69% [ST2.4] 23 17.69% [CMVM2.1] 92 70.77%

[T2.8] 27 20.77% [SR2.2] 75 57.69% [ST2.5] 34 26.15% [CMVM2.3] 53 40.77%

[T2.9] 32 24.62% [SR2.5] 63 48.46% [ST2.6] 25 19.23% [CMVM3.1] 14 10.77%

[T2.10] 26 20.00% [SR2.7] 58 44.62% [ST3.3] 16 12.31% [CMVM3.2] 24 18.46%

[T2.11] 30 23.08% [SR3.2] 18 13.85% [ST3.4] 4 3.08% [CMVM3.3] 18 13.85%

[T2.12] 28 21.54% [SR3.3] 19 14.62% [ST3.5] 3 2.31% [CMVM3.4] 30 23.08%

[T3.1] 8 6.15% [SR3.4] 21 16.15% [ST3.6] 6 4.62% [CMVM3.5] 16 12.31%

[T3.2] 14 10.77% [CMVM3.6] 3 2.31%

[T3.6] 8 6.15% [CMVM3.7] 35 26.92%

[CMVM3.8] 0 0.00%

FIGURE 17. BSIMM14 SCORECARD. This scorecard shows how often we observed each of the BSIMM14 activities in the data pool of 130 firms.

73

ACTIVITY CHANGES OVER TIME
The popular business book, The 7 Habits of Highly Effective People,
explores the theory that successful individuals share common
qualities in achieving their goals and that these qualities can be
identified and applied by others. The same premise can also be
applied to SSIs. Table 8 lists the 20 most observed activities in the
BSIMM14 data pool. The data suggests that if your organization is
working on its own SSI, you should consider implementing these
activities. As a reminder of how practices and activity labeling works,
activity SM1.4 is from the Strategy & Metrics practice, and it was
observed in 90.8% of the 130 BSIMM14 participant organizations.

Instead of the top 20 activities overall, Table 7 shows the most
common activity in each BSIMM practice (e.g., SM1.4 refers to an
activity in the Strategy & Metrics practice). Although we can’t directly
conclude that these 12 activities are necessary for all SSIs, we can
say with confidence that they’re commonly found in initiatives whose
efforts span all 12 practices. This suggests that if an organization
is working on an initiative of its own, its efforts will likely include the
majority of these 12 activities over time.

In addition to looking at the most common activities, we can also
analyze the fastest-growing activity observation rates between
BSIMM13 and BSIMM14. Level 1 BSIMM activities are the most
common activities observed in each practice, and in BSIMM14, seven
of the level 1 activities saw double-digit growth despite already being
very common. Table 9 shows the top three of these activities.

TABLE 8. TOP 20 ACTIVITIES BY OBSERVATION PERCENTAGE. Shown here are the most observed activities in the BSIMM14 data pool of 130 firms. This
frequent observation means that each activity has broad applicability across a wide variety of SSIs.

BSIMM14 TOP 20 ACTIVITIES BY OBSERVATION PERCENTAGE

ACTIVITY PERCENTAGE DESCRIPTION
[SM1.4] 90.8% Implement security checkpoints and associated governance.

[CMVM1.1] 90.0% Create or interface with incident response.

[CP1.2] 87.7% Identify privacy obligations.

[PT1.1] 87.7% Use external penetration testers to find problems.

[SE1.2] 86.9% Ensure host and network security basics are in place.

[CR1.4] 86.2% Use automated code review tools.

[ST1.1] 84.6% Perform edge/boundary value condition testing during QA.

[AA1.1] 83.1% Perform security feature review.

[CP1.1] 79.2% Unify regulatory pressures.

[SR1.2] 79.2% Create a security portal.

[PT1.2] 78.5% Feed results to the defect management and mitigation system.

[CP1.3] 77.7% Create policy.

[SM1.1] 77.7% Publish process and evolve as necessary.

[SR1.5] 77.7% Identify open source.

[SFD1.1] 76.9% Integrate and deliver security features.

[CMVM1.3] 75.4% Track software defects found in operations through the fix process.

[SR1.3] 75.4% Translate compliance constraints to requirements.

[CMVM1.2] 73.1% Identify software defects found in operations monitoring and feed them back to engineering.

[SFD1.2] 73.1% Application architecture teams engage with the SSG.

[SR1.1] 72.3% Create security standards.

BSIMM14 TOP ACTIVITIES BY PRACTICE

ACTIVITY PERCENTAGE DESCRIPTION

[SM1.4] 90.8% Implement security checkpoints and
associated governance.

[CP1.2] 87.7% Identify privacy obligations.

[T1.1] 58.5% Conduct software security
awareness training.

[AM1.5] 62.3% Gather and use attack intelligence.

[SFD1.1] 76.9% Integrate and deliver security
features.

[SR1.2] 79.2% Create a security portal.

[AA1.1] 83.1% Perform security feature review.

[CR1.4] 86.2% Use automated code review tools.

[ST1.1] 84.6% Perform edge/boundary value
condition testing during QA.

[PT1.1] 87.7% Use external penetration testers to
find problems.

[SE1.2] 86.9% Ensure host and network security
basics are in place.

[CMVM1.1] 90.0% Create or interface with incident
response.

TABLE 7. MOST COMMON ACTIVITY PER PRACTICE. This table shows the
most observed activity in each of the 12 BSIMM practices for the entire data
pool of 130 participant firms.

74

Tables 8 and 9 can help you understand what most firms are already
doing and discover potential gaps in your program. Another way to
look at the growth of activities between BSIMM13 and BSIMM14
is to look for trends, such as a high growth in observation rates
among common controls. There were 28 activities in BSIMM13 with
observations in the range of 40 to 79. The observation rate for six of
these activities, shown in Table 10, grew at 16% or higher. In addition,
there were 26 activities with observations in the 20 to 39 range, and
five of them grew at 20% or more (see Table 11).

If we analyze these fast-growing activities, we observe a few areas of
interest to consider in your SSI:

•	 Now that [CR1.4 Use automated code review tools] is observed
in more than 86% of all firms, SSGs are starting to enforce code
reviews for all projects [CR1.5]. In addition, firms are starting to
scale their security testing across their complete application
portfolio [PT2.3] and are expanding beyond doing DAST to include
security testing in QA automation [ST2.5]. This might highlight
that more firms are moving to the maturing phase of their
SSIs (see Appendix B) and are now working on the scalability,
efficiency, and effectiveness aspects of their programs.

•	 Firms have already invested heavily in fundamental activities to
manage their compliance obligations [CP1.1 Unify regulatory
pressure] and [SR1.3 Translate compliance constraints to
requirements], both of which are found in Table 7. In addition,
firms are increasing their efforts to manage compliance risk
[CP2.2] and creating a repeatable way to document their
compliance story [CP3.1]. There are potentially additional
examples of what organizations do once they enter the maturing
phase of their SSIs.

•	 In response to multiple high-profile breaches in the last few years,
we observed significant growth in activities to address software
supply chain risk management (see Trends and Insights).
Potentially, organizations are also responding to these breaches
by investing in attack intelligence [AM1.5] they can use to improve
their programs.

BSIMM14 HIGH-GROWTH ACTIVITIES (1)

ACTIVITY GROWTH DESCRIPTION

[CR1.5] 19.4% Make code review mandatory for all
projects.

[AM1.3] 16.7% Identify potential attackers.

[SE1.3] 16.5% Implement cloud security controls.

TABLE 9. VERY COMMON ACTIVITIES WITH ABOVE AVERAGE GROWTH.
This table shows that firms, including those just starting their SSIs, continue
to invest into fundamental activities.

BSIMM14 HIGH-GROWTH ACTIVITIES (2)

ACTIVITY GROWTH DESCRIPTION

[PT2.3] 22.2% Schedule periodic penetration tests for
application coverage.

[SE2.5] 21.2% Use application containers to support
security goals.

[CR1.5] 19.4% Make code review mandatory for all
projects.

[SE2.2] 19.3% Define secure deployment parameters and
configurations.

[AM1.3] 16.7% Identify potential attackers.

[SE1.3] 16.5% Implement cloud security controls.

TABLE 10. COMMON ACTIVITIES WITH HIGH GROWTH IN OBSERVATION
RATES. This table shows an ongoing trend of investment in common
activities. If you are not performing or planning to perform these activities,
consider them during your next planning cycle.

BSIMM14 HIGH-GROWTH ACTIVITIES (3)

ACTIVITY GROWTH DESCRIPTION

[PT2.3] 22.2% Schedule periodic penetration tests for
application coverage.

[SE2.5] 21.2% Use application containers to support
security goals.

[CR1.5] 19.4% Make code review mandatory for all
projects.

[SE2.2] 19.3% Define secure deployment parameters and
configurations.

[AM1.3] 16.7% Identify potential attackers.

[SE1.3] 16.5% Implement cloud security controls.

TABLE 11. ACTIVITIES WITH HIGH GROWTH IN OBSERVATION RATES. This
table shows potential new trends in the BSIMM14 data pool.

75

E. DATA ANALYSIS: VERTICALS

While every company is a software company these days,
there are differences in SSI implementation. You can
use this information on how vertical markets approach
software security to inform your own strategy.

An important use of the BSIMM data is to help everyone see how
different groups of organizations approach the implementation
of software security activities. Do certain groups focus more on
governance than testing? Or perhaps architecture and secure-by-
design components vs. operational maintenance? What about
training? Or vendor management? While it seems true that “every

company is becoming a software company,” different verticals still
have their own priorities. The BSIMM data helps us to observe and
analyze this.

Table 12 shows how the representation of different verticals has
grown and evolved over the history of the BSIMM. Financial, ISV,
and technology firms were early adopters of the BSIMM, and we’ve
recently seen increased participation by cloud firms.

An important use of the BSIMM data
helps everyone see how different
organizations approach implementing
software security activities.

TABLE 12. BSIMM VERTICALS OVER TIME. The BSIMM data pool has grown over the years as shown by growth in vertical representation. Remember that a firm
can appear in more than one vertical. Note also that FinTech became a separate vertical from Financial in BSIMM11.

BSIMM VERTICAL PARTCIPANTS OVER TIME

FINANCIAL FINTECH ISV TECH HEALTHCARE INTERNET
OF THINGS CLOUD INSURANCE

BSIMM14 43 12 33 39 10 21 32 15

BSIMM13 44 15 38 33 11 19 35 15

BSIMM12 38 21 42 28 14 18 26 13

BSIMM11 42 21 46 27 14 17 30 14

BSIMM10 57 43 20 16 13 20 11

BSIMM9 50 42 22 19 16 17 10

BSIMM8 47 38 16 17 12 16 11

BSIMM7 42 30 14 15 12 15 10

BSIMM6 33 27 17 10 13

BSIMM-V 26 25 14

BSIMM4 19 19 13

BSIMM3 17 15 10

BSIMM2 12 7 7

BSIMM1 4 4 2

76

IOT, CLOUD, AND ISV VERTICALS
IoT, cloud, and ISV firms each create software solutions, although
these verticals usually deploy their solutions in different ways.
Relative to BSIMM activities, cloud and ISV firms share a similar
observation pattern, except for the Compliance & Policy and
Architecture Analysis practices, where the ISV vertical is ahead of
the Cloud vertical (see Figure 18). This might reflect the different
relationships that ISVs and cloud firms have with their respective
customers and perhaps the level of regulation and transparency
required.

Using the vertical scorecards found later in this section (Figure 23),
we can perform further analysis on similarities and differences
between verticals. For example, we see that the observations
putting ISVs ahead of the Cloud vertical in the Architecture Analysis
practice are [AA1.2 Perform design review for high-risk applications]
and [AA2.1 Perform architecture analysis using a defined process],
where the observation rate for ISVs is around 35% higher than the
observation rate for cloud. This difference indicates that ISVs spend
significantly more effort on going beyond threat modeling [AA1.1] to
perform design reviews and AA.

IoT firms exhibit a similar pattern when compared to the weighted
average of the ISV and Cloud verticals, with a notably higher score
in Architecture Analysis and a lower score in Penetration Testing
(Figure 19). One potential explanation is that IoT manufacturers have
less control of the production environments where their products
are deployed, and their products are more likely to go for extended
periods without software updates, which might reduce the perceived
value of extended penetration testing and increase the perceived
value of robust security designs. Similarly, it could be the case that
IoT devices typically present an attack surface that’s very different
compared to a typical web application, and IoT devices usually aren’t
sitting in front of large databases of PII or other private information.

FINANCIAL, HEALTHCARE, AND
INSURANCE VERTICALS
Three verticals in the BSIMM operate in highly regulated industries:
Financial, Healthcare, and Insurance (see Figure 20 on the next page).
In our long experience with the BSIMM, we’ve seen large financial
firms reacting to regulatory pressures by starting SSIs earlier than
insurance and healthcare firms. However, for the first time, the
SSG average ages for financial services and insurance firms are
5.8 and 6.5 years, respectively, compared to 5.1 years in healthcare
firms. Despite the narrowing of this age difference, financial firms
still display higher maturity. This likely reflects a longer history of
software security activity in the Financial vertical, coupled with an
influx of younger financial firms that have comparatively new but
relatively mature SSGs.

Although organizations in the Healthcare vertical include some
mature outliers, the data for these three regulated verticals shows
it lags the others in most practices but is ahead in Architecture
Analysis. Compared to financial firms, we see a similar picture in
the Insurance vertical, which is ahead in Security Testing but close
or lagging in other practices. The biggest differences between
the Insurance and Financial verticals are in Compliance & Policy,
Security Features & Design, Penetration Testing, and Configuration
Management & Vulnerability Management, where the Financial
vertical leads Insurance.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 18. COMPARING CLOUD AND ISV VERTICALS. This diagram helps
explain the differences, on a percentage scale, between practices in the Cloud
and ISV verticals. Here, we see differences in the Compliance & Policy, Attack
Models, and Architecture Analysis practices.

Cloud (32) ISV (33)

FIGURE 19. COMPARING IOT AND THE WEIGHTED AVERAGE OF ISV
AND CLOUD. While the ISV and Cloud verticals are very similar, there are
significant variations between IoT and those two verticals. The differences,
on a percentage scale, in risk and deployment models, along with customer
expectations, can explain the distinctions in their SSIs.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features

 & Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

IoT (21) ISV (33)/Cloud (32) Weighted Average

77

FINANCIAL AND TECHNOLOGY
VERTICALS
Financial and Technology are the two verticals with the highest
BSIMM scores. Figure 21 shows that while the average score across
both verticals is similar in most practices, there are significant
differences as well. Technology firms have matched financial firms in
Compliance & Policy, likely due to recent strengthening of regulatory
requirements. Technology firms have a higher average score in
Architecture Analysis and Security Testing.

To understand more about the differences in these two practices, we
analyzed the vertical scorecards found later in this section (Figure
23). In the Architecture Analysis practice, while financial firms have
a high observation rate for threat modeling [AA1.1 Perform security
feature review], the observation rates for design review [AA1.2
Perform design review for high-risk applications] and architecture
risk analysis [AA2.1 Perform architecture analysis using a defined
process] are almost three times higher in the Technology vertical
compared to the Financial one. In addition, the observation rates for
enabling engineering teams to be self-sufficient in performing AA
([AA3.1 Have engineering teams lead AA process] and [AA3.3 Make
the SSG available as an AA resource or mentor]) are more than two
times higher among technology firms compared to financial firms,
which are similarly highly regulated exhibit significant differences in
their SSIs. While they all have a focus on Compliance & Policy, there
are significant differences, on a percentage scale, in most other
practices, indicating that each vertical is responding to its regulatory
obligations in its own way.

One explanation for this difference is the tighter relationship between
hardware and software in many technology products. When the
software must be closely mated to its hardware, then AA and
engineering-driven design reviews are much more important to long-
term success for products in the field. This trend seems to hold for
IoT firms and perhaps even for healthcare firms that are making IoT
devices, which are doing more in the Architecture Analysis practice
as compared to the overall data pool.

In the Security Testing practice, we see significantly higher
observation rates for technology firms even when we ignore [ST2.6
Perform fuzz testing customized to application APIs], where we
expect technology firms to perform a lot more fuzzing compared to
financial ones. This includes fundamental activities such as [ST1.1
Perform edge/boundary value condition testing during QA] and [ST1.3
Drive tests with security requirements and security features].

When it comes to automation of security testing ([ST1.4 Integrate
opaque-box security tools into the QA process], [ST2.5 Drive QA tests
with AST results], and [ST3.4 Leverage code coverage analysis]),
the observation rate for technology firms is almost double that
of financial firms. The difference is even more pronounced when
we look at activities [ST2.4 Drive QA tests with AST results] and
[ST3.5 Begin to build and apply adversarial security tests (abuse
cases)], which enable more in-depth testing. For these activities, the
observation rate for technology firms is five times higher that it is for
financial ones.

FIGURE 20. FINANCIAL VS. HEALTHCARE VS. INSURANCE. Even verticals
that are similarly highly regulated exhibit significant differences in their SSIs.
While they all have a focus on Compliance & Policy, there are significant
differences, on a percentage scale, in most other practices, indicating that
each vertical is responding to its regulatory obligations in its own way.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

Financial (43) Healthcare (10) Insurance (15)

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features

 & Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 21. FINANCIAL VS. TECHNOLOGY. Technology firms appear to
invest significantly more effort into in-depth design reviews, automation of
security testing, and enablement of engineering teams to be self-sufficient,
resulting in the differences, on a percentage scale, seen above. One potential
explanation is that many technology firms build long-life products that they
ship to customers and therefore perform more in-depth analysis before
release.

Financial (43) Technology (39)

78

TECHNOLOGY VS. NON-TECHNOLOGY
The Technology vertical stands out as the one with the least similarity
to the other verticals. As such, it’s informative to make a comparison
between technology firms and everyone else, as illustrated in Figure
22. The biggest differences where technology firms lead everyone
else are in Architecture Analysis and Security Testing, which could be
indicative of a comparatively higher level of engineering rigor.

VERTICAL SCORECARDS
Figure 23 shows the BSIMM scorecards for the eight verticals
compared side by side, allowing for discovery of differences and
similarities between verticals. This report includes some new
information for the vertical scorecards:

•	 For each activity per vertical, we present the observation rate as a
percentage (e.g., 78% of firms in the Cloud vertical are performing
[SM1.1]).

•	 To show the biggest outliers within each vertical, we highlighted
activities where observation rates are either at least 1.75 standard
deviations above average (highlighted in light blue) or at least
1.75 standard deviations below average (highlighted in gold). Use
these highlighted differences to identify apparently higher- and
lower-value activities unique to a vertical.

•	 We also highlighted five activities (see the activity column) with
the least differences between verticals (light gold color) and
five activities with the largest differences between verticals
(blue color). The activities in light orange appear to be uniformly
applicable across all verticals, while those in dark blue appear to
be more vertical-specific.

•	 We excluded in our analysis the activities with low observation
rates (lower than 10 for all firms in the data pool) for bullets #2
and #3 above.

The following are observations from Figure 23:

•	 The five activities with the least variation in observation rate
between verticals, not surprisingly, are some of the most common
activities in BSIMM14. These are [SM1.4 Implement security
checkpoints and associated governance], [SR1.3 Translate
compliance constraints to requirements], [ST1.1 Perform edge/
boundary value condition testing during QA], [SE1.2 Ensure host
and network security basics are in place], and [CMVM1.1 Create
or interface with incident response]. This is another indicator that
these activities are applicable to all SSIs, independent of what
vertical the firm is in.

•	 Activity [AM2.9 Monitor automated asset creation] was introduced
in BSIMM10. It has one of the largest differences between
verticals, with its observation rate for the Financial vertical is
significantly above the overall average. This is an indication that
financial firms are early adopters of [AM2.9] and the leaders in
implementing this activity. In addition, the observation rate for
[CMVM3.5 Automate verification of operational infrastructure
security] (also introduced in BSIMM10) among financial firms is
also significantly above the average. This is another indicator that
financial firms are early adopters as well as potential leaders in
the shift everywhere approach.

•	 Another three activities with large differences in observation rates
between verticals are [ST2.6 Perform fuzz testing customized
to application APIs], [ST3.3 Drive tests with design review
results], and [SE3.2 Use code protection]. For these activities, the
observation rate for technology firms is significantly higher than
the average, an indication that some verticals potentially focus on
specific activities because of their unique technology stacks (e.g.,
very API driven) and because they publish their software across
trust boundaries (e.g., shipping products to customers).

Technology (39) Non-technology (97)

FIGURE 22. TECHNOLOGY VS. NON-TECHNOLOGY. Shown here is a
comparison of the Technology vertical vs. the rest of the data pool on a
percentage scale.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

79

GOVERNANCE
ACTIVITY CLOUD (OF 32) FINANCIAL (OF 43) FINTECH (OF 12) HEALTHCARE (OF 10) INSURANCE (OF 15) IOT (OF 21) ISV (OF 33) TECH (OF 39)

STRATEGY & METRICS
[SM1.1] 78% 70% 75% 90% 80% 100% 79% 97%

[SM1.3] 59% 63% 50% 60% 73% 48% 61% 62%

[SM1.4] 91% 95% 92% 90% 80% 95% 85% 92%

[SM2.1] 63% 65% 75% 50% 73% 38% 45% 59%

[SM2.2] 53% 58% 75% 20% 40% 52% 48% 64%

[SM2.3] 69% 37% 83% 60% 53% 62% 79% 54%

[SM2.6] 56% 63% 67% 30% 47% 62% 58% 64%

[SM2.7] 44% 44% 50% 70% 60% 43% 48% 54%

[SM3.1] 22% 23% 33% 0% 13% 33% 24% 36%

[SM3.2] 9% 14% 17% 10% 20% 33% 12% 26%

[SM3.3] 19% 33% 33% 20% 27% 29% 15% 26%

[SM3.4] 6% 7% 17% 10% 13% 5% 6% 3%

[SM3.5] 0% 0% 0% 0% 0% 0% 0% 0%

COMPLIANCE & POLICY
[CP1.1] 69% 81% 83% 100% 80% 86% 82% 74%

[CP1.2] 84% 93% 100% 100% 100% 100% 85% 85%

[CP1.3] 66% 84% 67% 70% 80% 86% 73% 85%

[CP2.1] 44% 42% 58% 50% 33% 57% 45% 46%

[CP2.2] 41% 53% 33% 30% 40% 67% 42% 54%

[CP2.3] 50% 56% 67% 70% 47% 52% 55% 62%

[CP2.4] 41% 53% 42% 40% 53% 33% 52% 51%

[CP2.5] 59% 65% 67% 60% 47% 48% 70% 51%

[CP3.1] 13% 35% 50% 20% 40% 24% 18% 26%

[CP3.2] 19% 28% 8% 30% 20% 33% 27% 33%

[CP3.3] 16% 9% 8% 0% 7% 24% 12% 23%

TRAINING
[T1.1] 56% 60% 58% 30% 53% 76% 48% 69%

[T1.7] 53% 53% 50% 40% 53% 52% 45% 59%

[T1.8] 31% 60% 42% 30% 60% 29% 33% 49%

[T2.5] 38% 19% 58% 30% 33% 38% 42% 44%

[T2.8] 19% 9% 0% 20% 13% 33% 24% 36%

[T2.9] 13% 30% 8% 20% 33% 43% 9% 38%

[T2.10] 16% 26% 25% 10% 27% 19% 18% 18%

[T2.11] 19% 26% 0% 30% 27% 33% 15% 28%

[T2.12] 22% 26% 25% 0% 20% 19% 21% 26%

[T3.1] 3% 9% 8% 0% 13% 0% 3% 10%

[T3.2] 6% 19% 8% 10% 13% 10% 0% 8%

[T3.6] 6% 5% 8% 0% 0% 14% 3% 13%

80

INTELLIGENCE
ACTIVITY CLOUD (OF 32) FINANCIAL (OF 43) FINTECH (OF 12) HEALTHCARE (OF 10) INSURANCE (OF 15) IOT (OF 21) ISV (OF 33) TECH (OF 39)

ATTACK MODELS
[AM1.2] 41% 79% 75% 100% 93% 19% 42% 38%

[AM1.3] 22% 44% 42% 60% 67% 33% 18% 33%

[AM1.5] 50% 77% 50% 90% 73% 67% 36% 64%

[AM2.1] 9% 16% 17% 10% 20% 10% 3% 10%

[AM2.6] 16% 9% 8% 0% 0% 5% 9% 23%

[AM2.7] 9% 16% 8% 10% 13% 5% 9% 10%

[AM2.8] 19% 16% 8% 10% 13% 24% 12% 18%

[AM2.9] 19% 19% 8% 0% 7% 14% 12% 3%

[AM3.2] 9% 7% 0% 10% 7% 5% 3% 3%

[AM3.4] 3% 12% 8% 10% 7% 10% 3% 15%

[AM3.5] 3% 9% 0% 10% 20% 5% 3% 15%

SECURITY FEATURES & DESIGN
[SFD1.1] 75% 74% 83% 80% 67% 67% 73% 82%

[SFD1.2] 78% 70% 58% 80% 73% 86% 82% 77%

[SFD2.1] 34% 30% 58% 30% 7% 43% 33% 46%

[SFD2.2] 69% 44% 42% 40% 47% 71% 64% 64%

[SFD3.1] 9% 21% 8% 20% 13% 14% 9% 15%

[SFD3.2] 13% 19% 17% 10% 7% 10% 12% 21%

[SFD3.3] 3% 12% 8% 0% 7% 10% 0% 10%

STANDARDS & REQUIREMENTS
[SR1.1] 59% 79% 67% 70% 80% 76% 64% 77%

[SR1.2] 84% 70% 67% 80% 67% 90% 85% 92%

[SR1.3] 63% 81% 83% 80% 67% 81% 76% 77%

[SR1.5] 75% 74% 100% 100% 73% 86% 85% 79%

[SR2.2] 50% 67% 42% 60% 80% 57% 42% 62%

[SR2.5] 41% 53% 50% 50% 47% 48% 45% 56%

[SR2.7] 47% 44% 92% 30% 33% 33% 45% 51%

[SR3.2] 0% 12% 8% 30% 20% 24% 12% 15%

[SR3.3] 22% 7% 25% 10% 0% 14% 9% 23%

[SR3.4] 16% 19% 8% 10% 13% 24% 15% 21%

81

SSDL TOUCHPOINTS
ACTIVITY CLOUD (OF 32) FINANCIAL (OF 43) FINTECH (OF 12) HEALTHCARE (OF 10) INSURANCE (OF 15) IOT (OF 21) ISV (OF 33) TECH (OF 39)

ARCHITECTURE ANALYSIS
[AA1.1] 91% 79% 92% 70% 87% 90% 91% 87%

[AA1.2] 34% 33% 33% 70% 40% 71% 45% 64%

[AA1.4] 28% 77% 67% 60% 73% 24% 24% 33%

[AA2.1] 22% 16% 8% 40% 20% 57% 27% 49%

[AA2.2] 19% 12% 8% 40% 13% 57% 24% 54%

[AA2.4] 22% 23% 33% 50% 27% 48% 33% 41%

[AA3.1] 13% 9% 8% 20% 20% 24% 18% 33%

[AA3.2] 3% 7% 0% 10% 7% 14% 3% 8%

[AA3.3] 13% 9% 8% 10% 7% 14% 15% 21%

CODE REVIEW
[CR1.2] 66% 63% 67% 60% 60% 81% 61% 64%

[CR1.4] 81% 86% 92% 100% 87% 86% 88% 87%

[CR1.5] 47% 56% 75% 60% 47% 67% 55% 67%

[CR1.7] 47% 35% 58% 40% 40% 48% 48% 49%

[CR2.6] 28% 14% 33% 20% 13% 10% 24% 21%

[CR2.7] 16% 14% 17% 10% 20% 14% 3% 26%

[CR2.8] 16% 30% 17% 40% 20% 5% 15% 18%

[CR3.2] 9% 14% 8% 0% 7% 24% 3% 23%

[CR3.3] 3% 5% 17% 10% 7% 0% 0% 3%

[CR3.4] 0% 2% 0% 0% 0% 0% 0% 5%

[CR3.5] 3% 2% 0% 0% 0% 5% 3% 5%

SECURITY TESTING
[ST1.1] 91% 70% 75% 100% 73% 95% 91% 97%

[ST1.3] 72% 51% 58% 70% 60% 86% 85% 87%

[ST1.4] 44% 37% 75% 60% 40% 62% 55% 64%

[ST2.4] 16% 9% 17% 0% 0% 29% 21% 33%

[ST2.5] 34% 16% 33% 10% 13% 29% 39% 38%

[ST2.6] 16% 7% 17% 0% 0% 43% 24% 44%

[ST3.3] 6% 0% 0% 10% 7% 33% 9% 36%

[ST3.4] 6% 0% 0% 0% 0% 0% 3% 10%

[ST3.5] 0% 0% 0% 0% 0% 0% 0% 8%

[ST3.6] 16% 5% 17% 0% 7% 0% 6% 0%

82

DEPLOYMENT
ACTIVITY CLOUD (OF 32) FINANCIAL (OF 43) FINTECH (OF 12) HEALTHCARE (OF 10) INSURANCE (OF 15) IOT (OF 21) ISV (OF 33) TECH (OF 39)

PENETRATION TESTING
[PT1.1] 97% 91% 100% 90% 93% 81% 97% 77%

[PT1.2] 84% 74% 100% 70% 67% 67% 91% 74%

[PT1.3] 63% 70% 75% 70% 67% 62% 70% 54%

[PT2.2] 34% 28% 58% 10% 13% 52% 36% 41%

[PT2.3] 63% 53% 58% 20% 47% 33% 55% 26%

[PT3.1] 31% 23% 50% 10% 7% 33% 18% 31%

[PT3.2] 16% 16% 42% 10% 13% 24% 9% 23%

SOFTWARE ENVIRONMENT
[SE1.1] 66% 86% 67% 90% 80% 57% 61% 51%

[SE1.2] 88% 91% 100% 90% 100% 95% 76% 92%

[SE1.3] 81% 79% 83% 80% 93% 62% 82% 51%

[SE2.2] 50% 49% 58% 10% 40% 71% 52% 67%

[SE2.4] 38% 12% 25% 30% 7% 71% 42% 69%

[SE2.5] 59% 51% 83% 50% 53% 48% 52% 41%

[SE2.7] 56% 37% 58% 40% 33% 19% 48% 21%

[SE3.2] 6% 7% 8% 0% 0% 19% 9% 31%

[SE3.3] 16% 16% 25% 20% 13% 5% 18% 5%

[SE3.6] 13% 14% 17% 0% 0% 33% 12% 33%

[SE3.8] 6% 0% 8% 0% 0% 0% 3% 0%

[SE3.9] 0% 0% 0% 0% 0% 0% 0% 0%

CONFIGURATION MANAGEMENT & VULNERABILITY MANAGEMENT
[CMVM1.1] 84% 93% 92% 90% 87% 86% 88% 92%

[CMVM1.2] 81% 67% 83% 70% 60% 81% 82% 77%

[CMVM1.3] 81% 65% 83% 80% 47% 81% 85% 87%

[CMVM2.1] 72% 72% 58% 70% 67% 71% 79% 67%

[CMVM2.3] 34% 49% 50% 40% 27% 29% 30% 38%

[CMVM3.1] 9% 12% 33% 0% 0% 10% 9% 18%

[CMVM3.2] 13% 21% 8% 0% 7% 24% 9% 31%

[CMVM3.3] 16% 21% 25% 20% 27% 5% 6% 13%

[CMVM3.4] 28% 23% 42% 10% 20% 14% 24% 18%

[CMVM3.5] 16% 21% 17% 10% 7% 14% 3% 10%

[CMVM3.6] 3% 2% 0% 0% 0% 5% 3% 5%

[CMVM3.7] 38% 21% 8% 0% 13% 48% 36% 41%

[CMVM3.8] 0% 0% 0% 0% 0% 0% 0% 0%

FIGURE 23. VERTICAL COMPARISON SCORECARD. This table allows for easy comparisons of observation rates for the eight verticals tracked in BSIMM14. A
light gold color in the Activity column shows the five activities with the least differences in observation rates between verticals, whereas a light blue color shows
the five activities with the most differences. Blue and gold in the remaining columns show observation rates that are significantly different from the average, either
above or below.

83

F. DATA ANALYSIS: LONGITUDINAL

Every SSI changes over time as technologies, attackers,
attacks, budgets, and everything else also changes.
You can use this information to see whether your SSI’s
trajectory is similar to that of other programs.

The BSIMM captures real-world data about how organizations
approach software security across their portfolio. Given the BSIMM’s
longevity, this data provides a unique snapshot of how the participant
SSIs have evolved over the past 15 years, as well as how individual
programs have changed from assessment to assessment.

BUILDING A MODEL FOR SOFTWARE
SECURITY
In the late 1990s, software security began to flourish as a discipline
separate from computer and network security. Researchers began
to put more emphasis on studying the ways in which a developer
can contribute to or unintentionally undermine the security of an
application and started asking some specific questions: What kinds
of bugs and flaws lead to security problems? How can we identify
these problems systematically?

BSIMM ASSESSMENTS DONE OVER TIME

FIRMS 1ST
MEASUREMENTS

2ND
MEASUREMENTS

3RD
MEASUREMENTS

4TH
MEASUREMENTS

DATA POOL
MEASUREMENTS

BSIMM14 130 81 31 10 5 304

BSIMM13 130 76 35 11 8 314

BSIMM12 128 76 31 14 7 341

BSIMM11 130 77 32 12 9 357

BSIMM10 122 72 29 13 8 339

BSIMM9 120 78 22 13 7 320

BSIMM8 109 73 20 11 5 256

BSIMM7 95 65 15 13 2 237

BSIMM6 78 52 16 8 2 202

BSIMM-V 67 46 17 4 0 161

BSIMM4 51 38 12 1 0 95

BSIMM3 42 31 11 0 0 81

BSIMM2 30 30 0 0 0 49

BSIMM1 9 9 0 0 0 9

TABLE 13. BSIMM ASSESSMENTS DONE OVER TIME. The chart shows how the BSIMM study has grown over the years, including how some firms have received
multiple measurements.

Within a few years, there was an emerging consensus that building
secure software required more than smart individuals toiling
away on guidance and training. Getting security right, especially
across a software portfolio, meant being directly involved in the
software development process, guiding it even as the process
evolves. Since then, practitioners have come to learn that process,
testing, and developer tools alone are insufficient: software security
encompasses business, social, and organizational aspects as well.

Table 13 shows how the BSIMM has grown over the years. (Recall
that our data freshness constraints, introduced with BSIMM-V and
later tightened, cause data from firms with aging measurements
to be removed.) BSIMM14 describes the work of 11,000 SSG and
satellite members (champions) working directly in software security,
impacting the security efforts of almost 270,000 developers.

Forty-nine of the current participating firms have been through at
least two assessments, allowing us to study how their initiatives
changed over time. Across North America, EMEA, and APAC, 31 firms
are on their second assessment, 10 firms are on their third, five are
on their fourth, and two are on their fifth. One North America firm has
undertaken its sixth assessment, continuing its use of the BSIMM as
an SSI planning and management tool. Figure 24 shows these firms
by percentages across three major BSIMM regions.

84

CHANGES BETWEEN FIRST AND
SECOND ASSESSMENTS
Forty-nine of the 130 firms in BSIMM14 have been measured at least
twice. On average, the time between first and second measurements
for those 49 firms was 33.5 months. Although observations of
individual activities among the 12 practices come and go (as shown
in Figure 26), in general, remeasurement over time shows a clear
trend of increased maturity. The raw score went up in 44 of the 49
firms and remained the same in two. Across all 49 firms, the score
increased by an average of 13.1 (40.1%) from the first to second
measurement. Simply put, SSIs mature over time.

As shown in Figure 26, firms moving from their first assessment to
their second tend to invest in:

•	 Defining their program ([SM1.1 Publish process and evolve as
necessary], [SM2.1 Publish data about software security internally
and use it to drive change]), scaling the program using the
satellite ([SM2.3 Create or grow a satellite (security champions)]),
and evangelizing the secure SDLC as well

•	 Defining and enforcing policy and standards ([CP1.3 Create
policy], [SR2.2 Create a standards review process])

•	 Managing vendors through boilerplate security SLAs ([CP2.4
Include software security SLAs in all vendor contracts], [SR2.5
Create SLA boilerplate])

•	 Identifying open source components ([SR1.5 Identify open
source])

Figure 25 shows the average normalized observation rate per
practice for the 49 firms that have had a second assessment. Over
the average of about 33.5 months between the two assessments, we
see clear growth in every practice, especially in Strategy & Metrics,
Compliance & Policy, and Standards & Requirements. The practices
with the highest overall growth align with the individual activities
identified in Figure 26. The changes indicate that firms feel prepared
for their first assessment after focusing on foundational and
technical activities such as training and testing but then expand into
governance as they mature their SSIs.

There are two factors causing the numerical changes seen in the
longitudinal scorecard (Figure 26, showing 49 BSIMM14 firms
moving from their first to second assessments). The first factor is
that more firms have now done their second assessment (adding
firms to this group), and the second is that we drop old data
(removing firms from this group). Grouped together, the two factors
can cause a significant amount of change in the group of firms that
have had a second assessment, even if the change isn’t directly
visible in the scorecard.

FIGURE 24. ONGOING USE OF THE BSIMM IN DRIVING ORGANIZATIONAL
MATURITY. Organizations are continuing to do remeasurements to show
that their efforts are achieving the desired results (e.g., about 56% of North
America participants are on their first assessment).

R1 R2 R3+

0%

20%

40%

60%

80%

100%

APACEMEANorth America

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 25. FIRMS ROUND 1 VS. FIRMS ROUND 2. This diagram illustrates
the normalized observation rate change, on a percentage scale, in 49 firms
between their first and second BSIMM assessments.

R1 (49) R2 (49)

85

FIGURE 26. BSIMM14 REASSESSMENTS SCORECARD ROUND 1 VS. ROUND 2. This chart shows how 49 SSIs changed between their first and second
assessments. Dark gold shows the top five activities with the most increase in observations by count. Light gold shows the next five activities with the most
increase in observations by count.

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM

ROUND 1
(OF 49)

BSIMM
ROUND 2
(OF 49)

ACTIVITY
BSIMM

ROUND 1
(OF 49)

BSIMM
ROUND 2
(OF 49)

ACTIVITY
BSIMM

ROUND 1
(OF 49)

BSIMM
ROUND 2
(OF 49)

ACTIVITY
BSIMM

ROUND 1
(OF 49)

BSIMM
ROUND 2
(OF 49)

STRATEGY & METRICS ATTACK MODELS ARCHITECTURE ANALYSIS PENETRATION TESTING
[SM1.1] 25 43 [AM1.2] 29 35 [AA1.1] 45 43 [PT1.1] 43 44

[SM1.3] 27 33 [AM1.3] 14 21 [AA1.2] 12 21 [PT1.2] 36 35

[SM1.4] 42 45 [AM1.5] 21 29 [AA1.4] 23 28 [PT1.3] 29 37

[SM2.1] 14 30 [AM2.1] 3 6 [AA2.1] 8 17 [PT2.2] 7 11

[SM2.2] 21 25 [AM2.6] 3 5 [AA2.2] 7 16 [PT2.3] 9 17

[SM2.3] 13 37 [AM2.7] 3 6 [AA2.4] 11 14 [PT3.1] 4 4

[SM2.6] 21 26 [AM2.8] 1 4 [AA3.1] 3 7 [PT3.2] 3 3

[SM2.7] 19 31 [AM2.9] 1 4 [AA3.2] 0 1

[SM3.1] 10 12 [AM3.2] 1 0 [AA3.3] 1 3

[SM3.2] 0 5 [AM3.4] 1 4

[SM3.3] 5 15 [AM3.5] 7 4

[SM3.4] 0 2

[SM3.5] 0 0

COMPLIANCE & POLICY SECURITY FEATURES
& DESIGN CODE REVIEW SOFTWARE

ENVIRONMENT
[CP1.1] 35 42 [SFD1.1] 36 40 [CR1.2] 32 29 [SE1.1] 21 35

[CP1.2] 37 45 [SFD1.2] 31 37 [CR1.4] 28 44 [SE1.2] 42 46

[CP1.3] 21 40 [SFD2.1] 9 17 [CR1.5] 13 26 [SE1.3] 5 24

[CP2.1] 17 26 [SFD2.2] 16 23 [CR1.7] 8 21 [SE2.2] 20 20

[CP2.2] 19 18 [SFD3.1] 1 7 [CR2.6] 5 10 [SE2.4] 11 14

[CP2.3] 21 26 [SFD3.2] 4 8 [CR2.7] 8 10 [SE2.5] 8 14

[CP2.4] 16 29 [SFD3.3] 1 0 [CR2.8] 13 16 [SE2.7] 4 10

[CP2.5] 30 27 [CR3.2] 1 6 [SE3.2] 6 3

[CP3.1] 9 13 [CR3.3] 1 1 [SE3.3] 3 4

[CP3.2] 6 16 [CR3.4] 0 0 [SE3.6] 2 5

[CP3.3] 1 6 [CR3.5] 0 0 [SE3.8] 0 0

[SE3.9] 0 0

TRAINING STANDARDS &
REQUIREMENTS SECURITY TESTING CONFIG. MGMT.

& VULN. MGMT.
[T1.1] 27 31 [SR1.1] 31 37 [ST1.1] 40 45 [CMVM1.1] 40 43

[T1.7] 14 29 [SR1.2] 29 41 [ST1.3] 38 36 [CMVM1.2] 39 36

[T1.8] 12 18 [SR1.3] 34 40 [ST1.4] 13 25 [CMVM1.3] 33 36

[T2.5] 8 19 [SR1.5] 18 34 [ST2.4] 3 8 [CMVM2.1] 34 36

[T2.8] 9 8 [SR2.2] 14 28 [ST2.5] 3 9 [CMVM2.3] 22 29

[T2.9] 7 16 [SR2.5] 12 29 [ST2.6] 7 7 [CMVM3.1] 1 3

[T2.10] 3 9 [SR2.7] 7 15 [ST3.3] 0 3 [CMVM3.2] 2 6

[T2.11] 2 14 [SR3.2] 5 9 [ST3.4] 1 2 [CMVM3.3] 3 7

[T2.12] 1 8 [SR3.3] 4 5 [ST3.5] 0 0 [CMVM3.4] 3 11

[T3.1] 0 3 [SR3.4] 11 8 [ST3.6] 0 1 [CMVM3.5] 2 2

[T3.2] 5 7 [CMVM3.6] 0 0

[T3.6] 0 2 [CMVM3.7] 0 6

[CMVM3.8] 0 0

86

CHANGES BETWEEN FIRST AND THIRD
ASSESSMENTS
Eighteen of the 130 firms in BSIMM14 have been measured at
least three times. On average, the time between first and third
measurements for those 18 firms was 52.8 months. Although
individual activities among the 12 practices come and go (as shown
on the next page), in general, remeasurement over time shows a clear
trend of increased maturity. The raw score went up in all 18 firms.
Across all 18 firms, the score increased by an average of 21.9 (71.4%)
from their first to their third measurements. Again, SSIs mature over
time.

Although individual activities in the
12 practices come and go, in general,
remeasurement over time shows a
clear trend of increased maturity.

As shown in Figure 28, firms that move from their first assessment
to their third over the course of about 52.8 months, in addition to
changes shown previously, tend to invest in:

•	 Enabling self-sufficient engineering teams by leveraging
investments in training ([T1.7 Deliver on-demand individual
training], [T1.8 Include security resources in onboarding], [T2.9
Deliver role-specific advanced curriculum]), and static analysis
tool mentors ([CR1.7])

•	 Securing cloud environments ([SE1.3])

•	 Identifying potential attackers ([AM1.3])

Interestingly, while Figure 27 shows growth in every practice, it
shows only a slight increase in the Security Testing and Configuration
Management & Vulnerability Management practices. This could
mean that most organizations do a variety of Security Testing and
Configuration Management & Vulnerability Management activities
earlier on in their journeys.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 27. FIRMS ROUND 1 VS. FIRMS ROUND 3 SPIDER CHART. This
diagram illustrates the normalized observation rate change, on a percentage
scale, in 18 firms between their first and third BSIMM assessments.

R1 (18) R3 (8)

87

FIGURE 28. BSIMM14 REASSESSMENTS SCORECARD ROUND 1 VS. ROUND 3. This chart shows how 18 SSIs changed between their first and third
assessments. Gold shows the top five activities with the most increase in observations by count. Light gold shows the next five activities with the most increase in
observations by count.

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM

ROUND 1
(OF 18)

BSIMM
ROUND 3

(OF 18)
ACTIVITY

BSIMM
ROUND 1

(OF 18)

BSIMM
ROUND 3

(OF 18)
ACTIVITY

BSIMM
ROUND 1

(OF 18)

BSIMM
ROUND 3

(OF 18)
ACTIVITY

BSIMM
ROUND 1

(OF 18)

BSIMM
ROUND 3

(OF 18)

STRATEGY & METRICS ATTACK MODELS ARCHITECTURE ANALYSIS PENETRATION TESTING
[SM1.1] 6 18 [AM1.2] 13 16 [AA1.1] 16 18 [PT1.1] 16 18

[SM1.3] 10 15 [AM1.3] 4 12 [AA1.2] 1 7 [PT1.2] 10 16

[SM1.4] 16 17 [AM1.5] 8 12 [AA1.4] 8 13 [PT1.3] 10 14

[SM2.1] 5 14 [AM2.1] 1 6 [AA2.1] 1 7 [PT2.2] 1 7

[SM2.2] 5 10 [AM2.6] 0 1 [AA2.2] 0 6 [PT2.3] 4 5

[SM2.3] 5 13 [AM2.7] 0 1 [AA2.4] 1 5 [PT3.1] 1 2

[SM2.6] 7 12 [AM2.8] 0 0 [AA3.1] 1 3 [PT3.2] 0 3

[SM2.7] 4 14 [AM2.9] 0 1 [AA3.2] 0 0

[SM3.1] 4 7 [AM3.2] 0 1 [AA3.3] 0 1

[SM3.2] 0 4 [AM3.4] 0 2

[SM3.3] 3 5 [AM3.5] 3 4

[SM3.4] 0 1

[SM3.5] 0 0

COMPLIANCE & POLICY SECURITY FEATURES &
DESIGN CODE REVIEW SOFTWARE ENVIRONMENT

[CP1.1] 11 18 [SFD1.1] 15 16 [CR1.2] 13 16 [SE1.1] 8 15

[CP1.2] 14 17 [SFD1.2] 13 14 [CR1.4] 11 18 [SE1.2] 15 17

[CP1.3] 7 13 [SFD2.1] 2 5 [CR1.5] 3 10 [SE1.3] 0 10

[CP2.1] 6 10 [SFD2.2] 5 11 [CR1.7] 3 15 [SE2.2] 3 4

[CP2.2] 5 9 [SFD3.1] 0 2 [CR2.6] 1 5 [SE2.4] 2 3

[CP2.3] 7 13 [SFD3.2] 2 6 [CR2.7] 4 5 [SE2.5] 1 9

[CP2.4] 5 11 [SFD3.3] 0 0 [CR2.8] 6 8 [SE2.7] 0 4

[CP2.5] 9 13 [CR3.2] 0 2 [SE3.2] 2 2

[CP3.1] 4 9 [CR3.3] 0 2 [SE3.3] 2 2

[CP3.2] 5 4 [CR3.4] 0 0 [SE3.6] 0 1

[CP3.3] 1 1 [CR3.5] 0 0 [SE3.8] 0 0

[SE3.9] 0 0

TRAINING STANDARDS &
 REQUIREMENTS SECURITY TESTING CONFIG. MGMT.

& VULN. MGMT.
[T1.1] 11 12 [SR1.1] 12 15 [ST1.1] 16 15 [CMVM1.1] 16 17

[T1.7] 7 15 [SR1.2] 12 17 [ST1.3] 17 16 [CMVM1.2] 17 16

[T1.8] 2 13 [SR1.3] 14 17 [ST1.4] 4 13 [CMVM1.3] 12 14

[T2.5] 4 10 [SR1.5] 4 13 [ST2.4] 0 2 [CMVM2.1] 14 16

[T2.8] 2 5 [SR2.2] 6 13 [ST2.5] 0 2 [CMVM2.3] 10 11

[T2.9] 1 7 [SR2.5] 4 10 [ST2.6] 2 1 [CMVM3.1] 0 0

[T2.10] 0 1 [SR2.7] 3 8 [ST3.3] 0 1 [CMVM3.2] 0 0

[T2.11] 0 4 [SR3.2] 4 5 [ST3.4] 0 1 [CMVM3.3] 1 3

[T2.12] 0 4 [SR3.3] 2 3 [ST3.5] 0 0 [CMVM3.4] 1 6

[T3.1] 0 1 [SR3.4] 6 5 [ST3.6] 0 0 [CMVM3.5] 0 1

[T3.2] 0 4 [CMVM3.6] 0 0

[T3.6] 0 0 [CMVM3.7] 0 0

[CMVM3.8] 0 0

88

G. DATA ANALYSIS: SATELLITE
(SECURITY CHAMPIONS)

A security champions program allows an SSI and SSG
to scale their reach throughout the organization and
harmonize everyone’s approach to software security.
You can use this information to help justify your own
outreach program.

A security champions program is an organized effort to deputize
members of the development community into being software
security leaders for their geographies, application teams, or
technology groups. Once they are inducted into the program, the SSI
provides the champions with training, support, and the access
needed to answer security questions.

A security champions program is an effective way to address the
people and culture portions of the people, process, technology, and
culture view of an SSI’s scope. Firms typically rely on their security
champions to lead the ground-level security push among developers,
architects, QA, operations, and other stakeholders such as cloud
and site reliability. A strong security champions program enables an
SSI to scale people-driven activities, tune automated activities, and
prioritize remediation tracking activities within an organization. In
Figure 29, the teal bars show that firms can achieve higher scores
even with a lower ratio of SSG to developers (e.g., the bottom 20%
have an SSG-to-developer ratio of 3.8%). One way these firms are
able to scale is by increasing the ratio of champions to developers,
as shown by the teal bars (e.g., the bottom 20% have a satellite-to-
developer ratio of 1.9%).

While the presence of a champions program doesn’t guarantee
a high number of activity observations, there is a correlation that
appears when grouping BSIMM firms by scores. More than 80%
of firms in the highest scoring group have a champions program
as compared to 20% in the lowest scoring group. Figure 30 shows
the score increases from an average of 22.3 activities in the lowest
scoring group (shown on the dark blue line), up to an average of 73.2
activities in the high scoring group (shown here as the top 20%).

FIGURE 29. AVERAGE RATIO OF SSG AND SATELLITE SIZE TO DEVELOPERS
FOR THREE SCORE BUCKETS. There is a strong correlation between security
champions’ support and overall BSIMM score (scale on the right).

SSG to Developers Satellite to Developers Average Score

0%

2%

4%

6%

Top 20%Middle 60%Bottom 20%

20

10

0

30

40

50

60

70

80

Top 20%Middle 60%Bottom 20%

8%

10%

12%

FIGURE 30. PERCENTAGE OF FIRMS THAT HAVE A SATELLITE, ORGANIZED
IN THREE BUCKETS BY BSIMM SCORE. Presence of a satellite and average
score (scale on the right) appear to be correlated, but we don’t have enough
data to say which is the cause and which is the effect. Here we see, for
example, that in the bottom scoring 20% (about 15 firms) of the 76 (of 130)
firms with a satellite, the average score was just over 20 compared to an
average score of over 75 for the top scoring 20% with a satellite.

Percentage of Firms with a Satellite (out of 76) Average Score

0

20%

0%

40%

60%

80%

100%

20

0

40

60

80

100

Top 20%Middle 60%Bottom 20%

89

When separating firms into groups with and without a satellite, the
activity observation rate increases in every practice (see Figure 31).
While the biggest differences between the two spiders are in Strategy
& Metrics, Training, and Standards & Requirements, the firms with
a satellite also spend consistently more effort on defect discovery
in the Architecture Analysis, Code Review, Security Testing, and
Penetration Testing practices.

Figure 32 shows that as SSIs get older, they have higher average
scores and are more likely to have a satellite (champions team),
so is the presence of a satellite the reason for higher scores or the
consequence of older SSIs? One way to answer this question is to
look at the average ratio of SSG size to number of developers, shown
in Figure 29, which might indicate that there is a correlation between
SSI reach and the size of the security champions team.

88% of f irms in the highest scoring
group have a champions program,
compared to 38% in the lowest
scoring group.

Seventy-eight percent of the 49 BSIMM14 firms that have been
assessed more than once have a satellite, while 48% of the firms on
their first assessment do not. Many firms that are new to software
security take some time to identify and develop a satellite. This data
suggests that as an SSI matures, its activities become distributed
and institutionalized into the organizational structure, perhaps even
into engineering automation as well, requiring an expanded satellite
to provide expertise and be the local voice of the SSG.

Configuration Management &

Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 31. COMPARING FIRMS WITH AND WITHOUT A SATELLITE. The
presence of a satellite (champions program) seems to correlate strongly with
an increase in program maturity as evidenced by increased scores by practice
on a percentage scale

Satellite (80) No Satellite (50)

FIGURE 32. BSIMM SCORE DISTRIBUTION RELATIVE TO SATELLITE SIZE
AND SSG AGE. Older SSIs (dark blue line) not only tend to have a higher
BSIMM score (buckets 0-20, 21-30, etc.), they are also more likely to have a
champions program (dark purple line).

Satellite Average AgeNo Satellite Percentage with a Satellite

0

5

10

15

20

25

30

35

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

61-12551-6041-5031-4021-300-20

Co
un

t o
f F

irm
s

&
Av

er
ag

e
Ag

e

90

H. DATA ANALYSIS: SSG

SSGs are the primary implementers of an SSI,
responsible for governance, enablement, productivity,
and continuous growth. You can use this information to
put your SSI and SSG on a growth path.

This section analyzes how SSIs evolve over time by analyzing SSG
age, SSG score, and other relevant data.

SSG CHARACTERISTICS
As the BSIMM participants changed, we added a greater number of
firms with newer SSIs and began to track new verticals that have less
software security experience (see Table 12 in Appendix E). Thus, we
expected a decrease in participant scores, which is easily seen in
Figure 33 for BSIMM7 through BSIMM8.

In BSIMM9, the average and the median scores started to increase.
We saw the largest increase in BSIMM13 when the average and
median scores increased by 4.1 and 3, respectively. One reason
for this change in average data pool score appears to be the mix
of firms using the BSIMM as part of their SSI journey. For example,
Figure 34 shows how the SSG age of firms entering the BSIMM
data pool changed over time. In BSIMM14, and in concert with the
increase in average scores seen for BSIMM13 in Figure 33, we saw
a significantly higher average and median SSG age of new firms vs.
what was seen in previous years.

A second reason appears to be firms continuing to use the BSIMM
to guide their initiatives. Firms using the BSIMM as an ongoing
measurement tool are likely also making sufficient improvements to
justify the ongoing creation of SSI scorecards. See Appendix F for
more details on how SSIs evolve as seen through remeasurement
data.

A third reason appears to be the effect of firms aging out of the data
pool (see Figure 35). We see a similar assessment score trend in
mature verticals such as that of the Financial vertical (see Figure 36).

Note that when creating BSIMM11, we recognized the need to realign
the Financial vertical. Over the past several years, financial and
FinTech firms differentiated significantly, and we became concerned
that having both in one vertical bucket could affect our analysis and
conclusions. Accordingly, we created a FinTech bucket and removed
FinTech firms from the financial bucket. This action created a new
FinTech vertical for analysis and reduced the size (but increased the
homogeneity) of the Financial vertical. To be clear, we did not carry
this change backward to previous BSIMM versions, meaning that
some BSIMM10 and older financial data is not directly comparable to
BSIMM11 and newer data.

Given their importance to overall SSI efforts, we also closely monitor
satellite trends. Many firms with no satellite continue to exist in the
data pool, which causes the median satellite size to be 10 (50 of 130
firms had no satellite at the time of their current assessment); 57% of
the 23 firms added for BSIMM14 had no satellite at assessment time,
as seen in Figure 37.

FIGURE 34. AVERAGE AND MEDIAN SSG AGE FOR NEW FIRMS ENTERING
THE BSIMM DATA POOL. The median SSG age of firms entering BSIMM7
through BSIMM8 was declining and so did the average BSIMM score, while
outliers in BSIMM7 and BSIMM8 resulted in a high average SSG age. Starting
with BSIMM9, the median age of firms entering the BSIMM was higher again,
which tracks with the increase of average BSIMM scores.

0

1

2

3

4

5

6

Average SSG Age Median SSG Age

BSIMM14BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7

0

10

20

30

40

50

FIGURE 33. AVERAGE BSIMM PARTICIPANT SCORE. Adding firms with less
experience decreased the average score from BSIMM7 through BSIMM8, even
as remeasurements have shown that individual firm maturity increases over
time.

Average Participant Score Median Participant Score

BSIMM14BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7

91

0

10

20

30

40

50

FIGURE 37. STATISTICS FOR FIRMS WITH AND WITHOUT A SATELLITE.
This data appears to validate the notion that having more people, both
centralized and distributed into engineering teams, helps SSIs achieve higher
scores. For the 80 BSIMM14 firms with a satellite at last assessment time,
the average satellite size was 93 with a median of 40 (not shown). We present
the average and median SSG size to remove the impact of a few significant
outliers.

Satellite (80 of 130) No Satellite (50 of 130)

Average ScoreAverage SSG AgeMedian SSG Size

FIGURE 38. SSI SCORE DIVIDED BY AGE. By notionally organizing SSIs into
emerging, maturing, and enabling phases by age in years, we see a steady
growth in score as SSIs mature.

0%

10%

20%

30%

40%

50%

60%

70%

9.0 - 25

6.0 - 9.0

4.5 - 6

3.0 - 4.5 1.5 - 3.0

0 - 1.5

30

0

5

10

15

20

25

FIGURE 35. NUMBER OF FIRMS AGED OUT OF THE BSIMM DATA POOL.
A total of 143 firms have aged out since BSIMM-V. Eighteen firms that had
once aged out of the BSIMM data pool have subsequently rejoined with a new
assessment.

BSIMM14BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7

FIGURE 36. AVERAGE FINANCIAL VERTICAL FIRM SCORES. The average
score across the Financial vertical followed the same pattern as the average
score for AllFirms (shown in Figure 33). Even in such a mature vertical, we
observe a rise in the average scores over time.

0

10

20

30

40

50

BSIMM14BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7

92

SSG CHANGES BASED ON AGE
We’ve mentioned a trend that older SSIs generally achieve higher
scores, and we show this trend in Figure 16 in Appendix D. Here, we
analyze the data in more detail to identify additional trends related to
SSG age.

For this analysis, we put the 130 BSIMM14 SSIs into six groups
based on SSG age. Figure 38 shows the trend discussed earlier: the
older the SSI, the higher its BSIMM score. While the journey through
emerging, maturing, and enabling phases is not a straight line (see
Appendix B), here we equate the emerging phase with the first two
bars from the left (0-1.5 and 1.5-3.0 years of age), maturing phase
with the next two bars, and enabling phase with the last two.

While Figure 38 provides a low-resolution view into how SSIs change
with SSG age, the following five figures increase the resolution and
compare the normalized spiders for SSIs organized by their age.
Figure 39 shows, on a percentage scale, how the SSI is changing
through its emerging phase. The purple line shows what the
program looks like when SSIs are initially organizing themselves
and discovering what activities are already happening in the
organization. At this point in the journey, we typically see a relatively
high effort in Compliance & Policy, Standards & Requirements, and
Penetration Testing. Likely, these efforts are already in place due to
compliance obligations, an existing cybersecurity program and its
focus on standards, and quick wins in defect discovery by leveraging
penetration testing.

Over the next 18 months (teal line), SSIs build some capability around
documenting and socializing the SSDL, publishing and promoting
the process, and defect discovery for high-priority applications. The
differences between two spiders in Strategy & Metrics, Compliance
& Policy, Security Features & Design, Standards & Requirements, and
Architecture Analysis result from these efforts.

As SSIs move toward the maturing phase, they start focusing on
improving the efficiency, effectiveness, and scale of existing efforts,
see the “Maturing an SSI: Harmonizing Objectives” section of
Appendix B. This push typically involves getting more value out of
existing activities rather than doing more activities. Figure 40 shows
the difference in normalized spiders for organizations toward the
end of their emerging phase (purple line) and the beginning of their
maturing phase (teal line).

The lack of any large differences between the spiders in Figure
40 shows that firms at this stage focus on tweaking the existing
program as they improve scale, efficiency, and effectiveness. The
changes are often an investment in quick wins (such as penetration
testing) and automation (such as code reviews). As shown in the
diagram, when these SSIs look to improve scale and efficiency,
they appear to have less time for manual efforts in the Architecture
Analysis practice.

FIGURE 39. COMPARING EMERGING SSIs. As emerging SSIs move from
initial discovery steps (purple line) toward defining and rolling out the program
(teal line), they invest in Strategy & Metrics, Compliance & Policy, Standards &
Requirements, Penetration Testing, and Architecture Analysis. This tracks with
recommendations in Appendix B on how to start an SSI, where almost 45% of
all recommended activities in Figure 12 are from these four practices.

Configuration Management &

Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

SSGs with Ages 0-1.5 Years (22) SSGs with Ages 1.5-3.0 Years (16)

FIGURE 40. COMPARING LATE EMERGING TO EARLY MATURING SSIs.
As firms move from emerging to maturing, the average score increase is
relatively small. This aligns with our qualitative observations in Appendix B
that these firms often focus more on the scale, efficiency, and effectiveness of
existing activities in their SSIs vs. working on implementing new activities.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

SSGs with Ages 1.5-3.0 Years (16) SSGs with Ages 3.0-4.5 Years (26)

93

As SSIs move toward the end of their maturing phase, they start
investing again in improving policies, standards, requirements,
processes, metrics, and evangelism as shown by significant
differences in the spiders in Figure 41. The increase in observation
rates in the Strategy & Metrics, Compliance & Policy, and Standards &
Requirements practices demonstrate this trend.

Some factors specific to verticals might significantly influence the
overall shape of the spiders. For example, 20% of firms with an
SSG age between six and nine years are in the Insurance vertical as
compared to 6.7% in the entire BSIMM14 data pool. Similarly, 27%
of the firms with an SSG age above nine years are in the Financial
vertical versus 19% in the entire data pool. As we analyze the next
two figures, we keep these facts in mind. Refer to Appendix E for
more analysis of how the verticals compare to each other.

One potential explanation for the dip in Security Testing shown
in Figure 42 is that the Financial vertical has one of the lowest
observation rates for this practice. For the spike in the Penetration
Testing practice, almost 60% of all firms in the age bucket between
six and nine years are either in Cloud, ISV, or FinTech verticals—the
three verticals with the highest observation rates in the Penetration
Testing practice. Outside of the outliers mentioned above, SSIs
gradually increase their effort in all other practices as they start their
enabling journey.

In Figure 43, we see some of the largest increases in observation
rates, specifically in Attack Models, Security Features & Design,
Standards & Requirements, and Security Testing. The spike in
Security Testing can be explained by the high percentage of
technology firms in this age bucket. The average observation
rate in the Security Testing practice is almost 2.5 times higher for
technology firms compared to all other firms.

FIGURE 41. COMPARING MATURING SSIs. As firms move toward the end
of their maturing journey, SSGs start focusing again on implementing new
activities. Here, we see a trend toward a shift left approach where there
is increased investment in the Security Testing practice and decreased
investment in the Penetration Testing practice.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

SSGs with Ages 3.0-4.5 Years (26) SSGs with Ages 4.5-6.0 Years (21)

FIGURE 42. COMPARING LATE MATURING TO EARLY ENABLING SSIs. As
firms move from the maturing to the enabling stage, SSIs continue to invest
in Compliance & Policy. Overall, this comparative growth aligns with concepts
such as putting “Sec” in DevOps as well as scaling outreach and expertise,
which are discussed in the “Enabling SSIs” section of Appendix B.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features

 & Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

60

50

80

70

SSGs with Ages 4.5-6.0 Years (21) SSGs with Ages 6.0-9.0 Years (26)

FIGURE 43. COMPARING ENABLING SSIs. As SSIs continue their enabling
phase, they invest significant effort in reusable and pre-baked security
controls (e.g., from the Security Features & Design practice) and learning
from the attacker’s perspective (e.g., from the Attack Models practice). In fact,
the increase in observation rate of activities in Security Features & Design is
the highest increase in observation rates among all practices across all age
buckets.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

60

50

80

70

SSGs with Ages 6.0-9.0 Years (26) SSGs with Ages over 9.0 Years (19)

94

	Part 1: Executive Summary
	Welcome to BSIMM14
	BSIMM14 Data Highlights
	Trend and Insights Summary
	Call to Action
	The BSIMM Skeleton

	Part 2:
Trends and insights
	Software Supply Chain Risk Management
	Product Security and Application Security
	Security Enablers
	Security Economics
	Topics We’re Watching

	Part 3: BSIMM Participant
	Acknowledgements

	Part 4: Quick Guide to SSI Maturity
	A Baseline for SSI Leaders
	Using a BSIMM scorecard to make progress
	Roles in a software security initiative

	Part 5: The BSIMM Framework
	Core Knowledge
	Understanding the model

	Part 6: The BSIMM Activities
	Activities in the BSIMM
	Governance
	Intelligence
	SDLC Touchpoints
	Deployment

	Appendices
	A. Roles in a software security initiative
	Executive leadership
	Software security group leaders
	Security champions (satellite)
	Key stakeholders

	B. How to build or upgrade an SSI
	Construction lessons from the participants
	For an emerging SSI: SDLC to SSDL
	For a maturing SSI: harmonizing objectives
	For an enabling SSI: data-driven improvements

	C. Detailed view of the BSIMM framework
	The BSIMM Skeleton
	Creating BSIMM14 from BSIMM13

	Model changes over time

	D. Data: BSIMM14
	Age-based program changes
	Activity changes over time

	E. Data analysis: Verticals
	IoT, Cloud, and ISV verticals
	Financial, Healthcare, and Insurance verticals
	Financial and Technology verticals
	Technology vs. Non-technology
	Vertical scorecards

	F. Data Analysis: Longitudinal
	Building a model for software security
	Changes between First and Second Assessments
	Changes between First and Third Assessments

	G. Data analysis: Satellite (security champions)
	H. Data analysis: SSG
	SSG Characteristics
	SSG Changes Based on Age

