
2024 Open Source Security
and Risk Analysis Report
Your guide to securing your
open source supply chain

 | Open Source Security and Risk Analysis Report 2024 | 2

Table of Contents

3 | Executive Summary
3 | About the 2024 OSSRA
4 | Overview

6 | Open Source Vulnerabilities and Security
7 | Taking Action to Prevent Vulnerabilities from Entering Your Software Supply Chain
8 | Eight of the Top 10 Vulnerabilities Can Be Traced Back to One CWE
9 | Why Some BDSAs Don’t Have CVEs
10 | Vulnerabilities by Industry

11 | Open Source Licensing
12 | Understanding License Risk
14 | Protecting Against Security and IP Compliance Risk Introduced by AI Coding Tools

15 | Operational Factors Affecting Open Source Risk
15 | Open Source Consumers Need to Improve Maintenance Practices

16 | Findings and Recommendations
17 | Creating a Secure Software Development Framework
17 | Knowing What’s in Your Code
18 | Terminology
18 | Contributors

 | Open Source Security and Risk Analysis Report 2024 | 3

This report offers recommendations to help creators and consumers of open source software manage it responsibly, especially
in the context of securing the software supply chain. Whether a consumer or provider of software, you are part of the software
supply chain, and need to safeguard the applications you use from upstream as well as downstream risk. In the following pages,
we examine

•	Persistent open source security concerns
•	Why developers need to improve at keeping open source components up-to-date
•	The need for a Software Bill of Materials (SBOM) for software supply chain management
•	How to protect against the security and IP compliance risk introduced by AI coding tools

For nearly a decade, the major theme of the “Open Source Security and Risk Analysis” (OSSRA) report has been Do you know
what’s in your code? In 2024, it’s a question more important than ever before. With the prevalence of open source and the rise in
AI-generated code, more and more applications are now built with third-party code.

Without a complete view of what’s in your code, neither you, your vendors, nor your end users can be confident about what risks
your software may contain. Securing the software supply chain begins with knowing what open source components are in your
code, as well as identifying their respective licenses, code quality, and potential vulnerabilities.

About the 2024 OSSRA
In this, its ninth edition, the 2024 OSSRA report delivers an in-depth look at the current state of open source security,
compliance, licensing, and code quality risks in commercial software. The findings in this report are presented with the goal of
helping security, legal, risk, and development teams better understand the open source security and license risk landscape.

This report uses data from the Synopsys Black Duck® Audit Services team’s analysis of anonymized findings from 1,067
commercial codebases across 17 industries during 2023. The Audit Services team has helped security, development, and
legal teams around the world strengthen their security and license compliance programs for over 20 years. The team audits
thousands of codebases for our customers each year, with the primary aim of identifying software risks during merger and
acquisition (M&A) transactions.

The audits also provide a comprehensive, accurate Software Bill of Materials covering the open source, third-party code, web
services, and application programming interfaces (APIs) in an organization’s applications. The Audit Services team relies on
data from the Black Duck KnowledgeBase™ to identify potential license compliance and security risks. Sourced and curated by
the Synopsys Cybersecurity Research Center (CyRC), the KnowledgeBase includes data on more than 7.8 million open source
components from over 31,000 forges and repositories.

The OSSRA report highlights the prevalence of open source in software as well as the potential dangers of not properly
managing it. Open source is the foundation for all applications that businesses and consumers rely on today. Identifying,
tracking, and managing open source effectively is critical to a successful software security program—as well as a key element
to strengthening the security of the software supply chain.

Executive
Summary

 | Open Source Security and Risk Analysis Report 2024 | 4

Overview

14% of the
codebases assessed
for risk contained
vulnerabilities

older than 10 years

10
years

49% of the codebases
assessed for risk
had components that
had no development
activity in the
past 24 months

24
months

2.8 years was
the mean age of
vulnerabilities
in the codebases
assessed for risk

2.8
years

12
months

1% of the codebases
assessed for risk had
components that were at
least 12 months behind
on code maintainer
updates/patches

936 codebases underwent risk assessments1,067 codebases scanned in 2023

= 10 codebases

of codebases assessed for risk contained vulnerabilities

of codebases assessed for risk contained high-risk vulnerabilities

84%

74%
of the codebases assessed for risk contained components that were
10 versions or more behind the most current version of the component

91%

31%
of the total codebases
contained open source
with no license or a
custom license

53%
of the total
codebases contained
license conflicts

96%
of the total
codebases
contained
open source

77%
of all code in the
total codebases
originated from
open source

 | Open Source Security and Risk Analysis Report 2024 | 5

Figure 1: 1,067 Codebases Scanned by Industry

Aerospace,
Aviation,

Automotive,
�Transportation,

Logistics
69%

100%

Virtual Reality,
Gaming,

Entertainment,
Media 53%

97%

Manufacturing,
Industrials,

Robotics 88%
100%

Internet of Things
50%

100%

EdTech
87%
95%

Internet and
Mobile Apps 64%

100%

Big Data, AI, BI,
Machine Learning 70%

96%

Retail and
eCommerce 84%

100% Healthcare,
Health Tech,
Life Sciences 85%

88%

Computer Hardware
and Semiconductors 74%

100%
Financial Services

and FinTech 74%
99%

Marketing Tech
87%

100% Energy and
Clean Tech 83%

91%

Internet and
Software

Infrastructure 75%
100%

Cybersecurity
78%
95%

Telecommunications
and Wireless 85%

100%

Enterprise
Software/SaaS 79%

99%

Percentage of codebases containing
code originating from open source

Percentage of codebases
containing open source

 | Open Source Security and Risk Analysis Report 2024 | 6

Of the 1,067 codebases analyzed by the Black Duck Audit Services team and used as the base data for this year’s OSSRA report,
96% contained open source. Seventy-seven percent of all the source code and files scanned originated from open source code.

The average number of open source components in a given application this year was 526—a practical example of the
importance if not absolute necessity for automated security testing. Manual testing, which might be feasible for a small number
of components, becomes virtually impossible at scale and requires the use of an automated solution like software composition
analysis (SCA). Unlike manual testing, automated security tests can be executed quickly and consistently, allowing developers
to identify issues early in the development process without impacting delivery schedules or productivity.

Eighty-four percent of codebases that included a risk assessment contained at least one known open source vulnerability.
Seventy-four percent of those codebases contained high-risk vulnerabilities, a significant increase from 2022, when only 48%
of the codebases were found to contain high-risk vulnerabilities. High-risk vulnerabilities are those that have been actively
exploited, already have documented proof-of-concept exploits, or are classified as remote code execution vulnerabilities.

There’s no single answer for the 54% increase (26 percentage points) in high-risk vulnerabilities between 2022 and 2023. One
possible explanation is the economic downturn and consequent layoffs, which reduced the number of resources available to
locate and patch vulnerabilities. Additionally, 91% of the codebases were found to contain components 10 versions or more
behind the most current available version of the component. The simple conclusion is that the vast majority of open source
consumers simply aren’t updating the components they use.

Forty-nine percent of the codebases contained components that had no development activity within the past 24 months, and 1%
had components at least 12 months behind on code maintainer updates/patches.

Broadly, the term “maintainers” refers to those contributors who lead an open source project. They may be the final decision-
makers on which portions of source code go into a build or release, they may do all the code review and host the code under
their names for smaller projects, and they may make the ultimate decision over the direction of a project. Their day-to-day work
may vary but it can consist of reviewing pull requests and other contributions, releasing new versions of software, triaging and
handling security fixes, and community management and moderation.

A Note on the Audits
All Black Duck audits examine open source license compliance. Customers can opt out of the vulnerability/
operational risk assessment portion of the audit at their discretion. During 2023, the Black Duck Audit
Services team conducted 1,067 audits. Of those audits, 88% (936) also underwent a vulnerability/
operational risk assessment. The data in the “Open Source Vulnerabilities and Security” and “Operational
Factors Affecting Open Source Risk” sections of the 2024 OSSRA report is based on the 936 codebases
that included risk assessments. The data in the “Open Source Licensing” section is based on all 1,067
codebases.

Open Source
Vulnerabilities

and Security

54% increase in codebases
containing high-risk
vulnerabilities in the
past year

74%
(2023)

48%
(2022)

84% of codebases
contained at least
one open source
vulnerability

 | Open Source Security and Risk Analysis Report 2024 | 7

Most maintainers are diligent about keeping the open source projects they’re involved with up-to-date. In fact, many companies
specifically hire people to maintain open source projects the organization’s software relies upon. The same diligence needs
to be encouraged in open source consumers. Consumers of open source need to stay aware of the versions they have in use,
establish a regular cadence for updates, and practice software hygiene when it comes to open source—only downloading from
projects with a healthy ecosystem of maintainers and contributors.

Common Weakness Enumerations (CWEs) and Common Vulnerabilities and Exposures (CVEs) are popular lists used to
identify and classify security weaknesses and vulnerabilities in software. Black Duck Security Advisories (BDSAs) are Synopsys
proprietary reports designed to provide customers with timelier and more detailed information at a higher level than National
Vulnerability Database (NVD) CVE notices. BDSAs deliver actionable advice and details about vulnerabilities affecting items in
customers’ SBOMs to help ensure that they have a complete picture of the risk that an open source vulnerability may pose.

As shown in Figure 2, CWE-707 is the pillar for CWEs 20, 79, 80, 97, and 937. CWE-707 concerns security requirements that are
not being met before data is read from an upstream component or sent to a downstream component. Failing to properly neutralize
input can lead to exploits such as cross-site scripting (XSS) and SQL injection. A common and dangerous exploit, XSS is associated
with the majority of the top 10 vulnerabilities highlighted in this report.

Cross-site scripting occurs when an attacker takes advantage of a flaw in a website by sending malicious, malformed code, usually
written in JavaScript. Since this input isn’t properly neutralized or escaped, the exploit can manipulate the otherwise trustworthy
host into performing malicious tasks. The end target of most XSS attacks isn’t the host itself, though; it’s other users of the web
application. Once the malicious script is injected, it can be used to steal sensitive information, like session cookies.

Not only is XSS in our top 10 vulnerabilities list, it is also one of the vulnerabilities in the OWASP Top 10 list—a report that lists
the 10 most critical web application security risks. In its list, OWASP refers to XSS as A03:2021 – Injection. The reason for the
prevalence of XSS vulnerabilities can be credited to increased reliance on web-based applications as a way for organizations to
interact with customers, and for users to interact with one another. For example, consider how many eCommerce companies,
banks, internet service providers, insurance companies, and others offer web experiences to engage with their customers and
partners.

Again, the data clearly shows that development teams need to improve at keeping open source components up-to-date,
especially when it comes to popular open source components such as jQuery. The consequences of using older, more
vulnerable versions of open source can be grim. For example, #2 of the top 10 vulnerabilities found in the audits is BDSA-2020-
0686 (CVE-2020-11022), an XSS vulnerability in jQuery versions 1.2 to 3.5.0. This vulnerability enables passing HTML from
untrusted sources—even after sanitizing it—to one of jQuery’s DOM manipulation methods, and may execute untrusted code.

This issue was patched in jQuery 3.5.0, but as our data illustrates, a third of the codebases scanned for security risks
were found to be using a jQuery version still vulnerable to it. Malicious data could be used to breach a system, or sensitive
data—passwords, credit information—could be exposed. As noted earlier, cross-site scripting is one of the most common
vulnerabilities in applications, classically using a code injection attack against the various language interpreters in the browser,
such as HTML or JavaScript.

Mitigating Risk: Tips for Using jQuery and Other Popular Open Source Securely
All 10 of the top 10 open source components identified in the audits were written in JavaScript. The
bulk of vulnerabilities found in the audits were also associated with JavaScript libraries, notably
vulnerabilities in outdated versions of the jQuery JavaScript library.

•	 Use the latest version of jQuery. As shown in this report, older versions of jQuery often contain
security vulnerabilities.

•	 Consider subscribing to a security advisory service—such as Black Duck Security Advisories—to get
the latest vulnerability information. New security vulnerabilities are discovered in jQuery regularly.

•	 Use a secure coding framework to help you to identify and avoid potential security vulnerabilities in
your code.

•	 Use automated security testing—including static analysis, software composition analysis, and
dynamic analysis tools—to address code quality and security flaws throughout the software
development life cycle.

Eight of the top 10 vulnerabilities map to one pillar CWE, CWE-707, which addresses security
requirements that are not being met, and can lead to exploits such as cross-site scripting and
SQL injection.

jQuery is not inherently insecure. In fact, it is a well-maintained open source library with a large community of users, developers,
and maintainers. But problems often accompany popularity. According to the audits, jQuery was the component most likely to
have vulnerabilities, even though each of the jQuery vulnerabilities listed in this report have available patches. It is important for
users of jQuery—and indeed users of all open source—to be aware of the potential security risks associated with older versions
of software, and to take steps to mitigate those risks.

Taking Action to Prevent Vulnerabilities from Entering Your
Software Supply Chain

•	Create and maintain a Software Bill of Materials (SBOM). In the fight against software supply chain attacks, having an
accurate, up-to-date SBOM that inventories open source components is critical to assessing exposure, and ensuring that
your code remains high quality, compliant, and secure. A comprehensive SBOM lists all the open source components in
your applications as well as those components’ licenses, versions, and patch status—a strong defense against supply chain
attacks, including those using malicious packages.

•	Stay informed. Ensure that you have the means to be informed of newly identified malicious packages, malware, and
disclosed open source vulnerabilities. Look for newsfeeds or regularly issued advisories that provide actionable advice and
details about issues affecting open source components in your SBOM.

•	Perform code reviews. Examine the code of downloaded software before including it in your project. Check for any known
vulnerabilities. For additional insight, consider including a static analysis of source code to check for unknown security
weaknesses.

•	Be proactive. Just because a component isn’t vulnerable today doesn’t mean that it won’t be tomorrow. Intentionally
malicious packages may never even be discovered as “vulnerable.” Pay attention to component health and provenance
before implementation to avoid future security issues.

•	Use an automated software composition analysis (SCA) tool. An SCA tool automates the process of identification,
management, and mitigation of software security issues and allows developers to focus their energies on writing code.
Such tools can evaluate open source and third-party code.

https://cwe.mitre.org/data/definitions/707.html
https://cwe.mitre.org/data/definitions/707.html

 | Open Source Security and Risk Analysis Report 2024 | 8

Figure 2: Top 10 CVEs/BDSAs

Eight of the Top 10 Vulnerabilities Can Be Traced Back to One CWE
A “pillar weakness” is defined by the CWE project as the highest-level weakness representing a base for all class/variant weaknesses related to it.

 | Open Source Security and Risk Analysis Report 2024 | 9

Why Some BDSAs Don’t Have CVEs
Public sources, such as the National Vulnerability Database (NVD), are a good first step for information on publicly disclosed
vulnerabilities in open source software. But there can be lags in the reporting of any given NVD CVE entry. Timeliness has
always been a factor affecting the ability of the NVD to publicize security vulnerability data. In fact, there is often a significant
time lag between the first disclosure of a vulnerability and its publication in the NVD, with some research reporting a month on
average between the initial announcement and NVD publication.

Another problem with the NVD is that it often provides incomplete vulnerability data. Many CVEs published in the NVD do not
include vulnerable version ranges and are often too short to be useful. This is commonly because no resources were available to
research the entry.

Clearly, it’s unwise to rely solely on the NVD for vulnerability information. Many commercial SCA solutions can provide richer
vulnerability data than the NVD alone, in addition to finding issues more accurately and helping you fix them more quickly when
warranted. For example, if you are using Black Duck, an SCA solution from Synopsys, you can take advantage of BDSAs, which
are advisories of open source vulnerabilities identified by Synopsys security research teams. Often these advisories provide
earlier notification of vulnerabilities affecting your codebase—it can be days or weeks before they appear in the NVD. BDSAs
also provide more complete vulnerability data, delivering security insight, technical details, and upgrade/patch guidance beyond
anything else commercially available today. For example, there are three BDSAs without associated CVEs from the NVD in our
top 10 vulnerability listing for 2023.

BDSA-2021-3651
According to the BDSA, some versions of jQuery contain commented references to a hijacked domain. It is
a security issue of sorts, and the safest thing to do was remove the links to the hijacked domain, which
is what jQuery did in version 3.6.1, because users without awareness of a domain’s status could still be
exposed to unspecified attacks if they attempted to follow the links to the hijacked site. Although the
sites cannot be reached by running the code, there is value in flagging the issue, as the malicious site
could accidentally be clicked by a developer or anyone with access.

The Synopsys CyRC team advises that this BDSA is tagged as “informational,” a tag used when the “fix”
provided by the vendor takes the form of a warning in the code or the product documentation, or when the
vendor has rejected the CVE or disputed the findings, and deems the reported vulnerability as expected/
designed behavior in the component.

Category
CWE-546: Suspicious Comment

CVSS v3.1 score
5.10

BDSA-2014-0063
This is an older vulnerability, first raised as an issue in January 2014 and relating to a potential XSS
vulnerability in jQuery caused by a lack of user-supplied input validation. This could allow an attacker to
inject arbitrary web scripts and steal a victim’s session cookies.

According to the BDSA, a function parses an HTML string into an array of DOM nodes. Any scripts included
in event attributes passed to this function are immediately executed. This could leave a caller of the
function vulnerable to XSS attacks if they do not properly sanitize untrusted input before it is passed
to the function. An attacker could exploit this by crafting malicious HTML to be supplied to a victim. If
processed, any web scripts included will be executed on their system.

This vulnerability was mitigated in jQuery 3.0.0-rc1. However, the mitigation does not sanitize malicious
input and will still allow scripts to be executed. The default behavior of the parser is changed such that
if the context is unspecified or given as null/undefined, a new document is created. This delays execution
of parsed HTML until it is injected into the document, allowing the opportunity for tools to traverse the
created DOM and remove unsafe content after the function call.

Category
CWE: 79: Improper Neutralization of Input During Web Page Generation (“Cross-Site Scripting”)

CAPEC-588: DOM-Based XXS

CVSS v3.1 score
8.60

BDSA-2015-0567
Another older vulnerability, this time with jQuery vulnerable to arbitrary code execution—versions of
jQuery that use an unpatched UglifyJS parser are vulnerable to arbitrary code execution through crafted
JavaScript files. Ultimately, this can allow attackers to run rogue code.

The vulnerability was fixed in 1.12.0 and in 2.2.0.

Category
CWE Category A9: Using Components with Known Vulnerabilities

CAPEC-251: Local Code Inclusion (The Common Attack Pattern Enumeration and Classification [CAPEC]
effort provides a publicly available catalog of attack patterns along with a comprehensive schema and
classification taxonomy)

CVSS v3.1 score
7.9

https://cwe.mitre.org/data/definitions/546.html
https://github.com/jquery/jquery/releases/tag/3.0.0-rc1
https://cwe.mitre.org/data/definitions/79.html
https://capec.mitre.org/data/definitions/588.html
https://github.com/jquery/jquery/releases/tag/1.12.0
https://github.com/jquery/jquery/releases/tag/2.2.0
https://cwe.mitre.org/data/definitions/1035.html
https://capec.mitre.org/data/definitions/251.html

 | Open Source Security and Risk Analysis Report 2024 | 10

Vulnerabilities by Industry
Eighty-eight percent of the codebases associated with the Computer Hardware and Semiconductors sector contained vulnerabilities classified as high-risk (those with a severity score of 7 or higher), closely followed by Manufacturing, Industrials, Robotics; and Retail
and eCommerce, with 87% and 84% respectively.

Similar findings played out across each sector. Even the lowest percentage—for the Aerospace, Aviation, Automotive, Transportation, Logistics sector—is still unsettling, with a third of that industry’s codebases containing high-risk vulnerabilities. As shown in Figure 1,
open source was in every industry codebase we examined; it made up most of the codebases across each industry sector. Figure 3 demonstrates that these codebases also contain high numbers of known open source vulnerabilities that organizations have failed to
patch, leaving them vulnerable to exploit.

Computer Hardware and Semiconductors 88%

Manufacturing, Industrials, Robotics 87%

Retail and eCommerce 84%

Marketing Tech 81%

Enterprise Software/SaaS 80%

EdTech 75%

Energy and Clean Tech 75%

Financial Services and FinTech 73%

Healthcare, Health Tech, Life Sciences 73%

Cybersecurity 73%

Internet and Mobile Apps 72%

Internet and Software Infrastructure 67%

Big Data, AI, BI, Machine Learning 66%

Telecommunications and Wireless 63%

Internet of Things 50%

Virtual Reality, Gaming, Entertainment, Media 49%

Aerospace, Aviation, Automotive, Transportation, Logistics 33%

Figure 3: Percentage of Codebases Containing High-Risk Vulnerabilities

 | Open Source Security and Risk Analysis Report 2024 | 11

Effective software supply chain management requires licensing as well as security compliance. You’re using open source
components and libraries to build software and know those components are governed by open source licenses, but do you
know those licenses’ details? Even one noncompliant license in your software can result in legal issues, loss of lucrative
intellectual property, time-consuming remediation efforts, and delays in getting your product to market.

The Black Duck Audit Services team found that over half—53% —of the 2023 audited codebases contained open source with
license conflicts.

Open Source
Licensing

55%

43%

42%

39%

36%

ISC License

Creative Commons Zero v1.0 Universal

GNU Lesser General Public License v2.1
or Later

Mozilla Public License 2.0

The Unlicense

MIT License

Apache License 2.0

BSD 3-Clause “New” or “Revised” License

BSD 2-Clause “Simplified” License

Public Domain*

92%

89%

81%

69%

56%

*Component includes a statement that it is in the public domain but does not use a specific public domain license such as the Unlicense or
Creative Commons

Figure 4: Percentage of Top 10 Licenses Found in Codebases

 | Open Source Security and Risk Analysis Report 2024 | 12

Figure 5: Percentage of Top 10 Licenses with Conflicts

Creative Commons Attribution
Share Alike 3.0

Creative Commons Attribution
Share Alike 4.0

GNU Lesser General Public License v2.1
or Later

GNU General Public License v2.0 or Later

Apache License 2.0

GNU General Public License v3.0 or Later

Creative Commons Attribution 3.0

GNU Library General Public License v2
or Later

GNU Lesser General Public License v3.0
or Later

Mozilla Public License 2.0

17% 8%

15% 6%

16% 8%

13% 6%

8% 5%

The MIT license was found in 92% of the open source audited by Black Duck Audit Services in 2023. As a permissive license that
permits reuse within proprietary software, the MIT license has high compatibility and low risk with other software licenses. You
can be fairly certain that if you include third-party components in your software, you’re likely to find popular, permissive licenses
such as MIT, Apache, BSD, ISC, and Unlicense.

It should be noted that terms such as “low-risk” are only a guideline and should not be used to make decisions about using
the open source software governed by each license. For example, although Apache 2 software—generally considered to use a
low-risk license—can be included in projects licensed under GNU General Public License 3.0 (GPLv3), GPLv3 software cannot
be included in Apache projects. The licenses are incompatible in that situation as a result of Apache Software Foundation’s
licensing philosophy and the GPLv3 authors’ interpretation of copyright law. The safest strategy is for developers to consult their
corporate policies and legal teams for specific guidance regarding license compliance.

Creative Commons licenses were found in the 2023 audits to be the most prevalent cause of license conflict. Creative
Commons ShareAlike 3.0 (CC-SA 3.0) alone was found to be the cause of 17% of the identified license conflicts.

“Snippets”—lines of code that have been copied and pasted into source code—are quite frequently found by Black Duck audits.
They are often taken from the popular blog site Stack Overflow, which automatically licenses all publicly accessible user
contributions under Creative Commons ShareAlike. Unfortunately, the blanket license also covers code snippets posted on the
site. We say “unfortunately,” because these licenses are not intended for software, with Creative Commons explicit about this
in its FAQ: “We recommend against using Creative Commons licenses for software.” The CC-SA license can be read in some
situations as having a similar “viral” effect (that is, any work derived from a copyleft-licensed work must also be licensed under
the same copyleft terms) as the GNU Public License and can become a concern from a legal standpoint.

Understanding License Risk
In the U.S. and many other jurisdictions, creative work (including software) is protected by exclusive copyright by default. No
one can legally use, copy, distribute, or modify that software without explicit permission from the creator/author in the form of a
license that grants the right to do so.

Even the friendliest open source licenses include obligations that the user takes on in return for use of that software. Potential
license risk arises when a codebase includes open source with licenses that appear to conflict with the overall license of
the codebase. The GNU General Public License (GPL) is the most common copyleft license applied to open source projects.
Conflicts can arise when the code licensed under GPL is included in commercial, closed source software.

Variants or customized versions of standard open source licenses can place undesirable requirements on the licensee and
require legal evaluation for possible IP issues or other implications. The JSON license is a prime example of a customized
license. Based on the permissive MIT license, the JSON license adds the restriction that “The software shall be used for good,
not evil.” The ambiguity of this statement leaves its meaning up to interpretation, and many lawyers would advise against using
software so licensed, especially in the context of M&A scenarios.

Thirty-one percent of the 2023 audited codebases were using code with either no discernible license or a customized license,
virtually the same as last year’s findings. It’s not uncommon for open source audits to find code snippets from sites that, unlike
Stack Overflow, have no discernable terms of service or mention of software terms. Another common cause of open source
code without license terms is a developer using a code snippet but failing to bring the snippet’s associated licenses along with
it. Yet another issue when it comes to code with no associated license is the growing use of AI-assisted coding tools (see next
section).

 | Open Source Security and Risk Analysis Report 2024 | 13

A few probable reasons why several industry sectors have such a high percentage of open source license risk (see Figure 6) include

•	Many of the industries with a high number of conflicts tend to license and distribute their software as on-premises products. Many restrictive licenses apply specifically to software that is distributed in this manner. Other industries with lower numbers may do
more subscription-based or SaaS type deployments, which are not traditionally considered “distributing” and are not subject to the same license terms.

•	Semiconductor and hardware companies rely heavily on software and firmware, much of which incorporates open source code (see Figure 1). Complex system-on-a-chip designs can have millions of lines of code from diverse sources. Keeping track of licenses
and obligations at that scale can be challenging.

•	Open source is extremely prevalent in lower-level system software, firmware, drivers, and so on, which are integral to hardware products. Much of this is under GPL-type “copyleft” licenses that have strong sharing requirements if distributed.
•	Software supply chain sharing of firmware, drivers, and tools among companies and between hardware designers and manufacturers leads to open source spreading without tracking of origin or licenses through an SBOM inventory.

Computer Hardware and Semiconductors 92%

Manufacturing, Industrials, Robotics 81%

Big Data, AI, BI, Machine Learning 64%

Telecommunications and Wireless 62%

Internet of Things 60%

Enterprise Software/SaaS 54%

Energy and Clean Tech 53%

Cybersecurity 52%

Internet and Software Infrastructure 50%

Retail and eCommerce 50%

Virtual Reality, Gaming, Entertainment, Media 49%

EdTech 45%

Financial Services and FinTech 42%

Internet and Mobile Apps 41%

Aerospace, Aviation, Automotive, Transportation, Logistics 40%

Healthcare, Health Tech, Life Sciences 36%

Marketing Tech 19%

Figure 6: Percentage of Codebases Containing License Conflicts

 | Open Source Security and Risk Analysis Report 2024 | 14

Protecting Against Security and IP Compliance Risk Introduced by
AI Coding Tools
Arising with the use of AI-powered coding suggestion tools are questions around ownership, copyright, and licensing of the
generated code. For example, a class-action lawsuit filed against GitHub, Microsoft, and OpenAI claims that GitHub Copilot—a
cloud-based AI tool that offers developers autocomplete-style suggestions as they code—violates both copyright law and
software licensing requirements. The lawsuit further claims that the code suggested by Copilot uses licensed materials without
attribution, copyright notice, or adherence to the original licensing terms.

The Copilot case highlights the legal complexities surrounding the use of AI-generated code. For software developers, refraining
from using AI-assisted coding tools until the issue is resolved by legal or government decision is obviously the safest way to
avoid an action for license or copyright violations.

Developers who do want to use AI-assisted tools should exercise caution and avoid unnecessary risks. At a minimum, they
should have their organization ask their AI tool vendors whether its recommendations include source code subject to open
source licenses, and if so, whether that code can be highlighted or excluded from recommendation altogether.

Another solution is to use one of the available code scanners, such as Synopsys Black Duck, which uses snippet analysis to
scan source code and match individual lines of code back to any open source project they may originate from. Development
teams can identify the applicable license and subsequent terms for the open source code introduced by AI code assistants.

Best Practices for Open Source License Management in
Software Supply Chain Governance

•	 Conduct a thorough inventory of all third-party software components in your software, including
both open source and commercial software.

•	 Be aware that AI-assisted coding tools may produce code with the potential for license violations
and intellectual property infringement.

•	 Evaluate the license terms and conditions of each component and assess whether they are
compatible with the intended use of the product.

•	 Check for compatibility between the licenses of different components, as some licenses may not be
compatible with each other.

•	 Use automated scanning tools to identify and track license obligations and restrictions for each
component.

•	 Implement a process for ensuring ongoing license compliance, including regular license scans and
periodic reviews of license compliance procedures.

•	 Establish a review process and workflow for new or unfamiliar licenses.
•	 Ensure effective communication between legal, technical, and business stakeholders to properly

prioritize and execute license clearance (that is, the process by which a company decides whether a
particular component’s license is acceptable for use in its products) efforts.

•	 Document all license clearance activities, including license assessments and compliance procedures,
to ensure a record of compliance efforts and facilitate future audits.

https://www.finnegan.com/en/insights/articles/insights-from-the-pending-copilot-class-action-lawsuit.html

 | Open Source Security and Risk Analysis Report 2024 | 15

Ideally, open source consumers use only components supported by robust communities. Linux, for example, is improved every
day by thousands of developers from hundreds of organizations. However, of the 936 codebases examined by the Black Duck
Audit Services team that included risk assessments, 49% contained open source that had no new development in the last
two years. If a project is no longer being maintained—especially in the case of smaller projects—there have been no feature
upgrades, no code improvements, and no discovered security problems fixed.

It’s not an uncommon issue with open source projects. According to some reports, nearly 20% of Java and JavaScript
open source projects that were being maintained in 2022 are no longer being maintained in 2023, opening those projects
to vulnerabilities and exploits. Open source is largely the product of volunteer contributors and maintainers. While some
organizations such as Microsoft, RedHat, and Google have incentive programs in place to motivate open source project
maintenance and participation, the vast majority of companies do not. When maintainers have stopped maintaining a project,
one consequence is elevated security risk.

Open Source Consumers Need to Improve Maintenance Practices
Of the 936 codebases examined by the Black Duck Audit Services team in 2023 that included risk assessments, 91% contained
components 10 versions or more behind the most current version of the component.

There can be valid justifications for open source consumers not keeping an open source component up-to-date. If they’re
aware of the situation—which, unfortunately, many are not—a development team might determine that the risk of unintended
consequences outweighs whatever benefit would come from applying the newer version. For example, embedded software may
be at minimal risk from exploits that can only be introduced from an external source.

Or it could be a time/resources issue. With many teams already stretched to the limit building and testing new code, updates
to existing software can become a lower priority except for the most critical issues. The Synopsys “2023 Global State of
DevSecOps” report found that in a survey of 1,000 IT security professionals, 28% said their organizations take as much as three
weeks to patch critical security risks/vulnerabilities in deployed applications, with another 20% saying it could take up to a
month. And these figures pertain to all vulnerabilities—proprietary, commercial, and third-party software as well as open source.

As noted in nearly a decade of OSSRA reports, open source is different from commercial software—not worse, not better, but
different—and it requires different techniques to manage. For example, patches are handled quite differently for commercial and
open source software. The purchase of commercial software usually requires some review as part of a vendor management
program. On the other hand, open source may simply have been downloaded at the developer’s discretion. There may be
some organizational guardrails—use only code with permissive licenses, for example—but in many organizations, not even this
guidance exists.

All organizations that use commercial software are familiar with patches and updates being “pushed” to their software, or at a
minimum, receiving a notice from the vendor that an update—often an urgent update—is available for download. That’s seldom
the case with open source, where the open source consumer is expected to stay aware of a component’s status and download
new versions as they become available.

There’s only one viable solution to stay aware of the open source versions you use. You need an accurate, comprehensive
inventory of open source, as well as automated processes to monitor vulnerabilities, upgrades, and the overall health of the
open source in your software.

Operational
Factors

Affecting Open
Source Risk

49% of codebases that had risk
assessments contained open source
that had no new development in
the last two years

88% of codebases
analyzed in 2023
underwent risk
assessments

https://www.synopsys.com/software-integrity/resources/analyst-reports/state-of-devsecops.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/state-of-devsecops.html

 | Open Source Security and Risk Analysis Report 2024 | 16

Whether a single developer or a large company, everyone has a responsibility to maintain software supply chain security
practices in order to mitigate risks. As the number of software supply chain attacks grows, effectively managing open source
usage, components, and dependencies becomes even more critical to managing risk. Organizations that include open source in
their products—which, as this report demonstrates, is literally all organizations—should proactively manage open source risks as
a part of their secure software development practices.

“Securing the Software Supply Chain: Recommended Practices for Managing Open Source Software and Software Bill of
Materials,” published by the United States Cybersecurity and Infrastructure Security Agency in late 2023, provides detailed
guidelines for the use of open source in the software supply chain, including

•	Integrate open source into the secure build process of the product using the same policies and
process as with in-house developed components.
The security team commonly defines security policies, processes, and tools concerning open source. Developers will ideally
select a component with the needed features from a prevetted internal repository, which has had an initial vulnerability
assessment through an SCA security analysis tool, and then run further scans during the development and/or build stage to
catch issues as early as possible.

•	Track updates to open source and monitoring for issues and vulnerabilities.
When a vulnerability is identified, affected software should be assessed to identify the prevalence of the component and
its use within the product. The component should be updated, or, if it’s no longer being maintained, strong consideration
should be given to finding an alternative solution.

•	Use an SBOM.
Understanding which components are included in software is essential to accurate and complete management of code. An
SBOM is a formal record containing the details and supply chain relationships of the components in the software. SBOMs
increase software transparency and document component provenance. In the context of vulnerability management, SBOMs
support the identification and remediation of vulnerabilities. From a code quality standpoint, the existence of an SBOM may
be indicative of a supplier’s use of secure software development practices across the software development life cycle.

Executive Order (EO) 14028, “Improving the Nation’s Cybersecurity,” states that organizations may be requested to provide an
SBOM directly to the purchaser or publish it on a public website, and that both government and nongovernment parties may be
required to review the SBOM to ensure that software products comply with the minimum elements for an SBOM. The EO also
directed the Department of Commerce and the National Telecommunications and Information Administration (NTIA) to publish
“The Minimum Elements for a Software Bill of Materials (SBOM),” which outlined the activities and data required for an SBOM
as well as example formats that fulfill SBOM requirements. SPDX and CycloneDX were identified as the two most widely used
machine-readable SBOM formats. In mid 2023, the Office of Management and Budget (OMB) published Memorandum OMB-23-
16 updating an earlier OMB memo that allows federal agencies to require

•	SBOMs based on the criticality of software or other criteria, as determined by each agency
•	SBOMs in one of the formats defined by the NTIA

Findings and
Recommendations

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

 | Open Source Security and Risk Analysis Report 2024 | 17

Creating a Secure Software Development Framework
Software producers have a critical role to play in securing software supply chains for the benefit of their customers and users.
The National Institute of Standards and Technology’s (NIST) Secure Software Development Framework (SSDF) presents a
series of practices that serve as a baseline for securely developing software in a standardized way. Attestation to conformance
with the NIST SSDF has been signaled by the U.S. government as a probable requirement for all software procured directly or
indirectly by the U.S. government, and it’s likely that software suppliers will need to self-attest to their adherence to the SSDF
sometime in the near future.

Assessment tools such as the Synopsys SSDF Readiness Assessment can identify whether your organization’s software
development practices align with the practices and tasks of the SSDF so that you can attest with confidence that your software
development processes conform to SSDF standards. Similarly, Synopsys SBOM Services builds upon Black Duck Audit Services
processes to perform a full security audit of your software and generate an SBOM—a valuable service for organizations that do
not yet have SBOM-generation capabilities and need a baseline SBOM.

Software producers with regulatory or contractual obligations may receive requests for an audited SBOM. Software consumers
might want to audit the SBOM produced by one of their suppliers. In each of these scenarios, a trusted third party with a strong
reputation in software audits is required. The Synopsys SBOM Audit and Validation service builds on those proven processes to
audit the software and confirm whether the SBOM produced by the client accurately reflects the supply chain.

Knowing What’s in Your Code
Recapping the report’s findings

•	96% of the 1,000+ scanned codebases contained open source
•	77% of all their source code and files originated from open source
•	53% of the codebases had open source license conflicts
•	84% of the codebases assessed for security risks had vulnerabilities; 74% had high-risk vulnerabilities
•	91% of those codebases had components 10+ versions behind the latest version

Whether your organization develops or uses software, there’s a near certainty it has open source components. Do you know
exactly what those components are and whether they pose security or license risks? In the world of 2024, where 96% of code
was found to contain open source, visibility into your code needs to be a priority. When 91% of risk-assessed codebases are
using open source far behind the current version, consumers need to do better in keeping their code up-to-date, especially when
it comes to popular open source components.

Keeping open source updated should be treated with the same priorities as the code your team develops. Create and maintain
an SBOM that details what you have in your code, including details on version, license, and provenance. Set a regular cadence
for upgrades, especially if you’re using open source libraries from popular projects that have frequent maintainer activity.

Without comprehensive visibility into your code and keeping proactive software hygiene practices, you’re exposing your software
to potential exploits from open source vulnerabilities and IP compliance questions. Begin by using automated SCA tools to find
security, code quality, and licensing issues early in the SDLC—because you need to know without question what’s in your code.

Without comprehensive visibility
into your code and keeping proactive
software hygiene practices, you’re
exposing your software to potential
exploits from open source vulnerabilities
and IP compliance questions.

The Synopsys difference
Synopsys provides integrated solutions that transform the way you build and deliver software, accelerating innovation while
addressing business risk. With Synopsys, your developers can secure code as fast as they write it. Your development and
DevSecOps teams can automate testing within development pipelines without compromising velocity. And your security teams
can proactively manage risk and focus remediation efforts on what matters most to your organization. Our unmatched expertise
helps you plan and execute any security initiative. Only Synopsys offers everything you need to build trust in your software.

For more information about the Synopsys Software Integrity Group, visit us online at www.synopsys.com/software.
©2024 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at www.synopsys.com/
copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners. February 2024

http://www.synopsys.com/software
http://www.synopsys.com/copyright.html
http://www.synopsys.com/copyright.html

 | Open Source Security and Risk Analysis Report 2024 | 18

Terminology
Codebase
The code and associated libraries that make up an application or service.

Binary analysis
A type of static analysis that is used to identify the contents of an application when access to the source code isn’t possible.

CWE
Common Weakness Enumeration (CWE) is a community-developed list of software and hardware weakness types assembled
in three tiers. CWE has over 600 categories, including classes for buffer overflows, path/directory tree traversal errors, race
conditions, cross-site scripting, hard-coded passwords, and insecure random numbers.

CVE
Common Vulnerabilities and Exposures (CVE) is a list of publicly disclosed information security flaws.

Black Duck Security Advisory (BDSA)
Detailed, timely, consistent information on open source vulnerabilities, BDSAs provide Synopsys customers with early and
supplemental notification of open source vulnerabilities and upgrade/patch guidance. BDSAs deliver same-day vulnerability
notification, actionable mitigation guidance and workaround information, severity scoring, references, and more.

Software component
Prewritten code that developers can add to their software. A software component might be a utility, such as a calendar function,
or a comprehensive software framework supporting an entire application.

Dependency
A software component becomes a dependency when other software uses it—that is, when software becomes dependent
on that component. Any given application or service may have many dependencies, which themselves may depend on other
components.

Snippet
Snippets are small, reusable pieces of code that developers cut and paste into their own code. Although software may include
only a snippet of open source, users of the software must still comply with any license associated with that snippet.

Open source license
A set of terms and conditions stating end-user obligations, including how the component may be used and redistributed, when
an open source component (or a snippet of a component’s code) is used in software. Most open source licenses fall into one of
two categories.

Permissive license
A permissive license allows use with few restrictions. Generally, the main requirement of this type of license is to include
attribution of the original code to the original developers.

Copyleft license
A copyleft license generally includes a reciprocity obligation stating that modified and extended versions are released under
the same terms and conditions as the original code, and that the source code containing changes must be provided upon
request. Commercial entities are wary of including open source with copyleft licenses in their software, as its use can call
the overall codebase’s intellectual property into question.

Software composition analysis (SCA)
A type of application security tool used to automate the process of open source software management. SCA tools integrate
within the software development life cycle to identify the open source in a codebase, provide risk management and mitigation
recommendations, and perform license compliance verification.

Software Bill of Materials (SBOM)
A comprehensive inventory of the software components and dependencies in a codebase, often generated by a software
composition analysis tool. As phrased by the National Telecommunications and Information Administration, “An SBOM should
include a machine-readable inventory of your software components and dependencies, information about these components,
and their hierarchical relationships.” Since SBOMs are intended to be shared across companies and communities, having a
consistent format (that is both human- and machine-readable) with consistent content is critical. U.S. government guidelines
currently specify two standards as approved formats, Software Package Data Exchange (SPDX) and CycloneDX.

Contributors
The “Open Source Security and Risk Analysis” report is produced through the collaborative effort of the Synopsys Software
Integrity Group, including members of our Audit Services, Consulting, Research, Legal, and Marketing teams. Their work has
made the OSSRA the leading report on open source code quality, security, and license compliance for the past decade.

Special thanks for their contributions to this year’s report to Nancy Bernstein, Scott Handy, Siobhan Hunter, Matt Jacobs,
Natalie Lightner, Merin McDonell, Mike McGuire, Phil Odence, Rie Sekine, Liz Samet, Jenny Stout, and Jack Taylor.

Rachel Bay has performed her incredible design magic during the nine years we’ve worked on the OSSRA together. It’s been
my privilege and honor to write it. — Fred Bals

	Executive Summary
	About the 2024 OSSRA
	Overview

	Open Source Vulnerabilities and Security
	Taking Action to Prevent Vulnerabilities from Entering Your Software Supply Chain
	Eight of the Top 10 Vulnerabilities Can Be Traced Back to One CWE
	Why Some BDSAs Don’t Have CVEs
	Vulnerabilities by Industry

	Open Source Licensing
	Understanding License Risk
	Protecting Against Security and IP Compliance Risk Introduced by AI Coding Tools

	Operational Factors Affecting Open Source Risk
	Open Source Consumers Need to Improve Maintenance Practices

	Findings and Recommendations
	Creating a Secure Software Development Framework
	Knowing What’s in Your Code
	Terminology
	Contributors

