
Insights and Trends in Software
Security Testing from Black Duck

Global State
of DevSecOps
2024

blackduck.com

Executive Summary...1
About Black Duck.. 1

Findings Overview.. 2
AI-assisted development soars but securing AI-generated code lags far behind..2

Parallels between securing AI-generated code and securing open source...2

An increased focus on software security testing..2

Too much noise, too many tools.. 3

Looking ahead... 3

A Deep Dive into the State of DevSecOps in 2024.. 4
Three priorities are driving security testing...4

Protecting sensitive information... 4

Adhering to best practices... 4

Automating and ensuring ease of test configuration..5

Trending toward centralization... 5

A struggle to attain full security coverage..5

Who determines when security tests are run...6

A tool proliferation challenge.. 7

The noise factor... 7

Role-based differences.. 7

The AI revolution in security testing... 8

Worldwide AI adoption... 8

Most respondents not confident they’re securing AI-generated code...10

Interpreting and acting on security test results...12

Role-based differences..12

Geographical differences..12

Different approaches to parsing and cleansing results...12

Table of Contents

https://www.blackduck.com

blackduck.com

Table of Contents
From interpretation to action..14

Constant security testing vs. development speed tension...14

Role-based differences..14

How remediation is accomplished...15

Prioritizing issues for remediation..15

What happens when security issues are discovered...15

How developers are informed of issues...16

Conclusion... 17

Appendix.. 19

https://www.blackduck.com

blackduck.com | 1

Executive Summary
It is a time of radical change in software development, with organizations in every
industry recognizing the need for robust, efficient security processes that can keep
pace with new development practices, such as AI-assisted coding.

The findings in the “Global State of DevSecOps 2024” report are based on a
comprehensive survey that Black Duck® commissioned from Censuswide, an
international market research consultancy. More than 1,000 software developers,
application security (AppSec) professionals, CISOs, and DevOps engineers across
multiple countries and industries were included in the survey.

This report provides critical insights into the current state of DevSecOps practices
and AppSec testing. It delivers a comprehensive analysis of trends, challenges,
and opportunities, and it offers actionable insights for organizations seeking to
enhance their DevSecOps practices.

About Black Duck
Formerly the Synopsys Software Integrity Group, Black Duck offers the most
comprehensive, powerful, and trusted portfolio of AppSec solutions in the industry.
We have an unmatched track record of helping organizations secure their software
quickly, integrate security efficiently in their development environments, and safely
innovate with new technologies.

https://www.blackduck.com

blackduck.com | 2

AI-assisted development soars but securing
AI-generated code lags far behind
One of the most striking discoveries in this report is that the AI revolution
is already over—and AI won, at least when it comes to integrating AI
into software development processes. The adoption of AI in software
development has gone beyond a tipping point, with over 90% of the
respondents to our survey using AI assistance in some capacity.

Parallels between securing AI-generated code and
securing open source
The rapid adoption of AI-assisted coding by software development teams
shares several similarities with the historic rise of open source software
use. Both movements disrupted traditional software development
practices. Open source challenged proprietary software models, and AI-
assisted coding is transforming how code is written and reviewed.

But just as with open source use, bringing AI-assisted coding tools into
software development presents unique intellectual property (IP), licensing,
and security challenges that need careful management by development
teams. For example, both unmanaged open source and AI-generated
code can create ambiguity about IP ownership and licensing—especially
when the AI model uses datasets that might include open source or other
third-party code without attribution.

AI-assisted coding tools also have the potential to introduce security
vulnerabilities into codebases. One researcher flatly concludes that
“autogenerated code cannot be blindly trusted, and still requires a security
review to avoid introducing software vulnerabilities.”

There are clear challenges in managing and securing AI-generated
code. Our survey found that organizations are at different stages of

Although 85% of respondents to our survey say they have
some measures in place to address the challenges posed by
AI-generated code, less than a quarter were very confident
in their policies and processes for testing such code.

Here is the breakdown.

Findings
Overview

implementing policies and controls around AI tool usage, reflecting the
nascent nature of this trend.

Although 85% of respondents to our survey say they have some measures
in place to address the challenges posed by AI-generated code, only 24%
are “very confident” in their policies and processes for testing such code.
A total 67% of respondents feel only “moderately confident” (41%), “slightly
confident” (20%), or “not at all confident” (6%).

This lack of confidence may reflect the fact that that 21% of respondents
acknowledge that their development teams are bypassing corporate
policies and using unsanctioned—and, one would assume, unsupervised—
AI tools. Again, unmanaged AI use parallels the early days of unmanaged
open source use, when few executives were aware that their development
teams were incorporating open source libraries into proprietary code, let
alone the extent of that use.

An increased focus on software security
testing
Test coverage is substantial but not universal, with 57% of respondents
testing between 41% to 80% of their projects, branches, and repositories,
suggesting opportunities for expanding security test coverage.

Our findings show that organizations are prioritizing security testing
based on the sensitivity of information handled (37% of respondents),
while also emphasizing industry best practices (36%) and increasing use
of automated security testing (35%).

Configuration of security tests is becoming more centralized, with 55%
of respondents using centralized interfaces for test configuration. And
although their execution is becoming more automated, the persistence of
nonautomated activities documented in this report indicates substantial

24%

20%

41%

6%

VERY CONFIDENT

SLIGHTLY
 CONFIDENT

MODERATELY
CONFIDENT

NOT AT ALL
CONFIDENT

https://www.blackduck.com
https://jfrog.com/blog/analyzing-common-vulnerabilities-introduced-by-code-generative-ai/

blackduck.com | 3

room for improvement. A significant percentage of respondents still uses
manual processes in their application security testing and remediation
workflows. The exact amount varies depending on which manual process
we look at, but it ranges from about 15% to 43% of respondents.

Too much noise, too many tools
A slight majority of respondents find security test results at least
“somewhat easy” (52%) to understand and act upon, while another
20% deem their results “extremely easy” to understand. However, this
perception varies across roles, industries, and geographies.

The findings also reveal a critical challenge with “noise” in security
testing results; that is, output that is considered irrelevant or not worth
acting upon. Noise is often caused by a high number of false positives
or a large volume of duplicative true positives in results. Sixty percent
of respondents reported that they consider over 20% of their results as
noise, impacting efficiency and decision-making processes.

Despite a broader trend of integrating security into development
processes, 61% of respondents report that security testing moderately
or severely slows down development. The tension between security and
development speed remains a critical challenge for every industry.

The fact that 82% of organizations use between 6 and 20 security testing
tools is certainly a factor, with a broad proliferation of tools contributing
to the high levels of noise reported by respondents. Multiple tools may
detect the same issues, leading to duplicative results. Or different tools
may provide conflicting results for the same code or application. Each
tool may generate its own false positives, which compounds as more
tools are used.

With so many tools in use, organizations are struggling to effectively
integrate and correlate results across platforms and pipelines, leading to
difficulty distinguishing between genuine issues and false positives, as
well as challenges in prioritizing issues across different tools’ outputs.

Findings
Overview

Looking ahead
Several key trends are shaping the path of DevSecOps.

•	 Increased automation of security testing and
remediation processes

•	 A need for policies concerning the use of AI-
assisted development tools

•	 Enhanced focus on reducing noise in security test
results to improve efficiency

•	 The evolution of cross-functional collaboration in
security decision-making

Organizations have significant opportunities to
improve their DevSecOps practices by leveraging
automation, enhancing the clarity of security test
results, developing robust policies for AI-assisted
development, and fostering better cross-functional
collaboration.

As the landscape continues to evolve, organizations
must stay agile, adapting their AppSec processes to
meet emerging challenges. The most successful will
be those that can effectively balance rigorous security
practices with the speed and innovation demands of
modern software development.

https://www.blackduck.com

blackduck.com | 4

Our survey of over 1,000 security professionals reveals a state of flux, with
organizations striving to balance security measures with the demands
of rapid development cycles. This section delves into the current state of
AppSec testing and highlights key trends, challenges, and opportunities
that define the testing landscape in 2024.

Q1. 	 Which of the following criteria does your organization
consider when determining which application security tests
to run and when they are run?

Sensitivity of information accessed/transmitted by
the application

37%

General best practices recommended by third-party
organizations (e.g., OWASP)

36%

Ease-of-configuration or automation of the security tests 35%

Three priorities are driving security testing
Our results reveal that respondents to our survey have a clear set of
priorities for effective security testing. Protecting sensitive information is
a key mandate for security teams. Development teams value efficiency
through automation and closed feedback loops, and implementing best
practices for resilient pipelines is fundamental to operations teams.

Protecting sensitive information
The foremost consideration, cited by 37% of respondents, is protecting
the sensitive information accessed or transmitted by the application.
Taking a risk-based approach as these organizations are doing reflects a

A Deep Dive
into the State of
DevSecOps in
2024

mature understanding of the impact potential breaches can have across
different parts of an application ecosystem.

In a recent analysis of 1,300 customer applications, Black Duck found
sensitive data exposure issues affecting 86% of those customers,
accounting for over 30,000 vulnerabilities, including 4,800 critical-risk
instances. Sensitive data exposure is one of the most common and
serious security issues across industries. To address these vulnerabilities,
organizations need to implement strong encryption practices, use up-
to-date security protocols, and ensure that sensitive data is properly
protected both when it’s being transmitted and when it’s stored.

Our data shows that organizations in sectors such as Application/
Software, Banking/Finance, Healthcare, and Government are particularly
attuned to this priority, given the highly sensitive nature of the data they
handle.

Adhering to best practices
Thirty-six percent of organizations rely on the best practices
recommended by third-party organizations like OWASP. Adherence to
established guidelines ensures a baseline of security across diverse
development environments. However, it also raises questions about the
adaptability of these standards in the face of rapidly evolving threats.

Industry standards may have difficulty
adapting in the face of rapidly evolving
threats. For example, OWASP standards have
yet to address the unique security challenges
posed by AI-generated code.

https://www.blackduck.com

blackduck.com | 5

Automating and ensuring ease of test configuration
The emphasis on automation and ease of test configuration, prioritized by
35% of respondents, underscores the growing integration of security into
DevOps processes. This move toward DevSecOps reflects the recognition
that security must be woven into the fabric of the development life cycle
rather than treating it as an afterthought.

Trending toward centralization

Q2. 	 Which statement best describes your process of configuring
and running application security tests across your SDLC or CI
pipeline?

Testing tools provided by the same vendor are
configured using a centralized interface and
automatically run with policies

30%

All tests are configured using a centralized interface and
automatically run with policies

26%

The top responses to the survey’s Question 2 reveal a clear trend toward
centralization in tool configuration for efficiency and consistency. Thirty
percent of respondents reported using a vendor’s interface to configure
tests from that vendor, while 26% reported using a centralized interface
for all tests, regardless of vendor.

Centralizing security tools allows for a unified management interface,
which simplifies the monitoring and configuration of security measures.
This reduces the complexity associated with managing multiple
disparate systems, facilitates integration at each stage of the pipeline,
and ensures that security policies are consistently applied across the
organization. With a centralized system, security efforts can be more
easily coordinated, reducing the likelihood of gaps or overlaps in security
coverage. A centralized, holistic approach enhances the ability to detect
and respond to threats across the entire IT infrastructure.

Centralized management also allows better visibility into an
application’s security profile, enabling more effective identification
and mitigation of vulnerabilities. Further, it facilitates the
collection and analysis of security data, which is crucial for
proactive threat detection and response.

Overall, centralization and vendor consolidation in security
testing can significantly enhance an organization’s ability to
protect its digital assets by simplifying management, improving
coordination, and potentially reducing costs.

A struggle to attain full security coverage

Q3. 	 Which of the following statements best describes
the manner in which new projects, branches, or
repositories are added to your application security
testing queue?

All are added to the test queue manually (e.g.,
declared by dev team, selected by security team)

29%

All are added to the test queue automatically
(e.g., detected by testing tools)

38%

Most are added to the test queue automatically;
a few are added manually

22%

Most are added to the test queue manually;
a few are added automatically

6%

I am not familiar with how items are added to
the security testing queue

4%

https://www.blackduck.com

blackduck.com | 6

Q4. 	 Approximately what percentage of your projects, branches,
and repositories are included in your application security
testing queue?

Percentage of projects, branches, and
repositories included in testing queue

Percentage of
respondents

41%–60% 37%

61%–80% 21%

Despite the emphasis on comprehensive security, many organizations
struggle to achieve full coverage, as the responses to Questions 3 and 4
demonstrate. Nearly 30% of respondents still add new projects, branches,
or repositories to their application security testing queue manually. Six
percent use mostly manual processes with some automation. In other
words, about 35% of organizations are still heavily reliant on manual
intervention in their security testing queue management.

While there are varying perceptions of the extent to which security testing
impacts development workflows, survey results show a clear correlation
between the perceived impact on testing and manual processes. For
example, 50% of those that say application security testing slows down
the process also say that most projects are added to the test queue
manually.

However, 38% of respondents report that they are taking full advantage of
automated processes to include all projects in test queues, and another
22% report mostly using automated processes. This means that 60% of
organizations are leveraging automation to a significant degree in their
security testing workflows.

Thirty-seven percent of respondents include only 41% to 60% of their
projects, branches, and repositories in their testing queue. Twenty-one
percent achieve 61% to 80% coverage.

This coverage gap presents significant risk, potentially leaving critical
parts of an organization’s application ecosystem untested. While

counterintuitive, some respondents noted slightly higher-than-average
coverage despite using manual processes to add projects to the test
queue. This may simply be the level of coverage being perceived as higher
due to the greater level of effort to test each project.

Who determines when security tests are run

Q5. 	 Which of the following teams/departments determine which
application security tests are performed, when, and on which
projects?

Security 44%

Development/software engineering 42%

DevOps 37%

Quality assurance 34%

Compliance 28%

Cross-functional groups 21%

Legal 19%

None of the above 1%

The responses to Question 5 offer valuable insights into how
organizations are structuring their application security testing decisions.
This data paints a picture of organizations increasingly treating security
as a shared responsibility, integrated into various stages of the software
development life cycle.

The close percentages for security (44%) and development/ software
engineering (42%) suggest a trend toward shared responsibility for
security testing. This aligns well with DevSecOps principles, indicating that
security is becoming more integrated into the development process.

At 37%, DevOps teams play a significant role in security testing decisions.
This further supports the trend toward integrating security throughout
the development life cycle. At 34%, QA teams are also heavily involved,

35%
About 35% of organizations are
still heavily reliant on manual
intervention in their security
testing queue management.

https://www.blackduck.com

blackduck.com | 7

suggesting that many organizations view security as an integral part of
overall software quality.

The involvement of compliance (28%) and legal (19%) teams indicates
that regulatory and legal requirements are significant factors in security
testing decisions for many organizations.

Twenty-one percent of respondents indicate that cross-functional groups
are involved in these decisions, showing a trend toward collaborative,
multidisciplinary approaches to security. With only 1% selecting “None of
the above,” it’s clear that the majority of organizations have specific teams
or processes in place for determining security testing.

The distribution across teams suggests a relatively mature approach
to security in many organizations, moving away from security as solely
the responsibility of a dedicated security team. These results align
with broader industry trends toward DevSecOps and “shift-everywhere”
security practices, as described in the “Building Security in Maturity
Model” report, where security is integrated earlier and more continuously
in the development process.

A tool proliferation challenge

Q6. 	 Approximately how many application security testing tools
does your organization use?

Number of security testing tools Percentage of respondents

6–10 34%

11–15 33%

16–20 15%

Total 82%

One of the most striking findings from our survey is the sheer number
of security testing tools in use, as shown by the responses to Question 6.
Eighty-two percent of organizations use between 6 and 20 security testing
tools.

A proliferation of tools, although intended to provide comprehensive
coverage, introduces significant complexity in integration, results
interpretation, and overall management. It correlates strongly with another
key challenge—noise in security testing results.

The noise factor

Q9. 	 Approximately what percentage of security test results
are noise? For example: duplicative results, false positives,
conflicting with other tests/tools.

Percentage of noise in findings Percentage of respondents

21%–40% 30%

41%–60% 30%

Total 60%

Question 9 uncovers a significant hurdle in effective security testing:
the high level of noise in results. A total of 60% of respondents reported
that between 21% and 60% of their security test results are noise. A
high noise level can significantly impact the effectiveness of security
efforts and lead to efficiency loss, as teams must spend time filtering out
irrelevant findings. It can also lead to alert fatigue and genuine threats
being overlooked, as well as resource misallocation due to organizations
directing too much of their security efforts toward noncritical issues.

Role-based differences
There is a perception among security personnel of a high percentage of
noise within security test results. This is likely because security teams
are commonly tasked with managing security tests, as they sit toward
the top of the review funnel. These teams present dev/engineering teams
with cleansed and prioritized results, which in turn results in those teams
skewing toward lower perceived noise.

Likewise, 17% of dev/engineering personnel feel they don’t have enough
visibility into security tests to identify noise in results. This is in stark

82%
of organizations use between
6 and 20 security testing tools.

https://www.blackduck.com
https://www.blackduck.com/services/security-program/bsimm-maturity-model.html
https://www.blackduck.com/services/security-program/bsimm-maturity-model.html

blackduck.com | 8

contrast to CISOs, CTOs/CPOs, and AppSec professionals; only 1%
of respondents in those roles cite a lack of visibility when detecting
noisy results. One core tenet of efficient DevSecOps is adequate
visibility into software artifacts and associated risks across all teams.
Inadequate visibility can slow down issue detection, prioritization, and
remediation, and leave pipelines prone to breakdowns and software
open to attack.

The AI revolution in security testing

Q14. 	 Are your developers using AI, generative, or
transformational tools to write code and modify projects?

Yes (Net) 91%

Yes, all developers are permitted to, and do,
use these tools

27%

Yes, but only certain developers/teams are
permitted to, and do, use these tools

43%

Yes, while we do not allow the use of these
tools, we are aware that some developers
use them

21%

Over 90% of organizations are using AI tools in some capacity for
software development. The distribution of responses to Question 14
illustrates a seemingly phased adoption curve. Twenty-seven percent
of respondents note that all developers are permitted to use AI,
generative, or transformational tools in their work, while 43% permit
only certain developers or teams to use such tools, and 21% forbid
their use alongside an awareness that such tools are, in fact, being
used by their developers.

Worldwide AI adoption

Q14. 	 Are your developers using AI, generative, or transformational tools to write code and modify projects (by region)?

U.K. U.S. France Germany Finland China Singapore Japan

Yes (Net) 94% 97% 92% 94% 93% 97% 96% 60%

Yes, all developers are permitted
to, and do, use these tools

30% 26% 26% 20% 27% 35% 37% 26%

Yes, but only certain developers/
teams are permitted to, and do,
use these tools

39% 46% 41% 50% 51% 50% 37% 45%

Yes, while we do not allow the use
of these tools, we are aware that
some developers use them

26% 26% 25% 24% 14% 12% 22% 25%

No, developers are not permitted
to, and do not, use these tools

4% 2% 6% 6% 5% 3% 2% 3%

I do not have enough visibility
into development processes to
know if these tools are used

2% 2% 2% 1% 2% 0% 2% 1%

The regional responses to Question 14 demonstrate that AI adoption in software development is not only a phenomenon—it is a global phenomenon,
with slight variations in results probably reflecting differences in technological infrastructure, regulatory environments, or cultural attitudes toward AI.

https://www.blackduck.com

blackduck.com | 9

Similar numbers play out by industry sector, with over 90% adoption
reported across the Technology, Cybersecurity, FinTech, Education,
Banking/Financial, Healthcare, Media, Insurance, Transportation, and
Utilities sectors. Even lagging sectors, such as Nonprofit, report at least
50% adoption. Perhaps unsurprisingly, the larger the organization, the
more likely it has significantly adopted some facet of AI in its software
development.

This trend is reshaping the security testing landscape and also introduces
new challenges, particularly in securing AI-generated code and managing
potential biases or vulnerabilities that AI systems might introduce, as the
responses to Question 15 show.

Q15. 	 How confident are you that you have the processes in place to
manage and secure AI-generated code?

Confident (Net) 85%

Very confident we have the policies and
automated testing in place

24%

Moderately confident we have the policies
and automated testing in place

41%

Slightly confident we have the policies and
automated testing in place

20%

Not at all confident we have the policies and
automated testing in place

6%

This is not a priority at this time, as using AI-
generated code is against company policies

4%

I do not have enough visibility into our
processes to manage and secure AI-
generated code

5%

Technology

Cybersecurity

Application/
Software Development

Manufacturing

FinTech

Education

Banking/Financial

Telecommunications/
ISP

Healthcare

Retail

Media

Government

Insurance

Transportation

Nonprofit/Association

Utilities

Other

Q14	 Are your developers using AI, generative, or transformational tools to write code and modify projects
(by industry sector)?

91%

90%

90%

90%

50%

90%

92%

87%

97%

96%

75%

98%

95%

100%

85%

98%

84%

Developers Using AI

https://www.blackduck.com

blackduck.com | 10

Most respondents not confident they’re securing AI-generated code
While the net confidence level of respondents to Question 15 may seem high at first blush, a deeper dive into the responses show that 41% of
respondents are only moderately confident that they have the policies and automated testing in place to adequately vet AI-generated code, while
20% are only slightly confident and 6% are not at all confident—a total 67% of respondents altogether showing concern about managing and
securing AI-generated code.

This distribution suggests that even though their development teams are adopting AI tools, many organizations are still in the process of putting
policies and tools into place to manage the unique challenges posed by AI-generated code. Ensuring the reliability and security of that code remains
a significant challenge. As one example, AI tools trained on public open source codebases could introduce potential IP, copyright, and license issues
into the code they produce, particularly if that code is used in proprietary software.

Figure 1. Developers’ AI usage (permitted or not) correlated against moderate to high confidence in security controls

Confidence in security controls amid AI development
In Figure 1, starting from the left, less than 5% of organizations forbid
developers from using AI to write code or modify projects. Perhaps
this group’s moderate and high confidence in their preparedness
derives from their prohibition of the use of AI, or perhaps there are
other access controls that preclude access to AI resources.

The second group, 27% of respondents, reports a strong awareness
that AI is being used. Eighty-one percent have moderate or high
confidence in their security preparedness (22% of overall responses).
These respondents are readily leveraging AI tools and confident that
they have the controls in place to mitigate consequent risks.

The third and fourth groups are in the midst of an AI evolution, with
moderate to high confidence in their security preparedness and a
seemingly phased approach to AI-enabled development.

22%

36%

53%

38%

7%
4%

5%

11%

20%

15%
18%

33%

42%

0% 2%

7%
9%

45%

22%

11%

<5% of orgs 27% of orgs 43% of orgs 21% of orgs

Moderately confident we have
the policies and automated
testing in place

Not at all confident we have the
policies and automated testing
in place

Slightly confident we have the
policies and automated testing
in place

Very confident we have the
policies and automated testing
in place

This is not a priority at this time,
as using AI-generated code is
against company policies

https://www.blackduck.com

blackduck.com | 11

Figure 2. Developers’ AI usage (permitted or not) correlated against low to slight confidence in security controls AI and code snippets
A common practice of developers is to use “snippets” (small extracts
from larger pieces of code) in software, a problem now exacerbated
by the use of AI coding assistants. Although code might include only
a snippet of open source, users of the software must still comply
with any license associated with the snippet.

Even one noncompliant license in software can result in legal
reviews, freezes in merger and acquisition transactions, loss of
intellectual property rights, time-consuming remediation efforts, and
delays in getting a product to market.

Black Duck’s 2024 OSSRA report relates that over half—53%—of the
applications examined contained open source with license conflicts,
exposing those applications’ owners to potential IP ownership
questions.

In Figure 2, we can see some dissonance between respondents’ use
of AI-generated code and AI-assisted development, and the steps
they’re taking to safeguard their intellectual property and mitigate
security risks.

Starting from the left, the less than 5% that forbids the use of AI
tools altogether exhibits slight or nonexistent confidence in security
preparedness, with nearly 42% of this group claiming a lack of priority.
Consequently, their choice to disallow AI-enabled development may
stem from this lagging organizational approach to securing AI-
generated code.

The rightmost group highlights a greater exposure to risk, where
automated testing of AI-generated code is a notably lower priority
despite an awareness of the use of AI-assisted development.

The group second from right illustrates a seemingly phased adoption
of AI-enabled development and security controls, with limited
permission being granted, perhaps based upon a slight confidence in
preparedness.

Most concerning is the group second from left, which has some
development teams that are using AI with permission, despite a clear
lack of confidence in their preparations to mitigate risks.

22%

36%

53%

38%

7%
4%

5%

11%

20%

15%
18%

33%

42%

0% 2%

7%
9%

45%

22%

11%

<5% of orgs 27% of orgs 43% of orgs 21% of orgs

Moderately confident we have
the policies and automated
testing in place

Not at all confident we have the
policies and automated testing
in place

Slightly confident we have the
policies and automated testing
in place

Very confident we have the
policies and automated testing
in place

This is not a priority at this time,
as using AI-generated code is
against company policies

https://www.blackduck.com
https://www.blackduck.com/resources/analyst-reports/open-source-security-risk-analysis.html

blackduck.com | 12

Interpreting and acting on security test results
The effectiveness of application security testing hinges not just on the
execution of tests, but also on the ability to interpret results and take
appropriate action. This section examines the current state of result
interpretation and remediation based on our survey results, highlighting
both progress and persistent challenges in the field.

Q7.	 Which statement best describes the clarity and actionability
of the results of your application security tests?

Role-based differences
Our analysis suggests that CISOs, CTOs/CPOs, and AppSec professionals
generally reported higher levels of ease in understanding and acting upon
security test results compared to other roles (Question 7). For example,
37% of CISOs, 23% of CTO/CPOs, and 21% of AppSec professionals found
security test results “extremely easy” to understand and to act upon.

In contrast, only 14% of DevOps and dev/engineering personnel found
these tasks extremely easy. This may be due to senior-level personnel
having more experience or better interpretative tools at their command
than workers in the trenches. Unfortunately, those workers are usually the
ones on the front line of security testing and the ones whose efforts are
being hampered by the lack of clarity in testing results.

Q7	 Which statement best describes the clarity and actionability
of the results of your application security tests (by regional)?

Geographical differences
Notable variations were observed across countries. For example, 88% of
respondents in China found testing results easy to understand, compared
to 55% in the U.S. and 51% in Japan. These regional disparities suggest
differences in tool adoption, security culture, or regulatory environments
across countries.

4

(Net)

Singapore

U.K.

U.S.

China

Germany

Finland

France

Japan

72%

88%

83%

82%

76%

73%

71%

55%

51%

Regard results as easy to interpret and act on

Security test results are extremely easy to understand and to act upon

20%

37%

23%

21%

14%

All respondents

CISO

CTO/CPO

AppSec

DevOps and dev/
engineering

https://www.blackduck.com

blackduck.com | 13

Different approaches to parsing and cleansing results

Q8. 	 Which statement best describes your approach to parsing
and cleansing the results of application security tests?

Results generated by all tools are manually parsed
and cleansed

38%

We can automatically parse and cleanse results
from some testing tools; the remainder are
manually parsed and cleansed

28%

Results generated by all tools are automatically
parsed and cleansed

25%

Automated vs. manual review
As illustrated in Figure 3, it is possible to associate ease of
interpretation and action with the method of parsing and cleansing
data. The resulting insight reveals a clear benefit to establishing
automated mechanisms for parsing and cleansing security test
data, whether the benefit comes from accelerated review or more
consistent elimination of noise before human consumption. Of
those that manually parse and cleanse test results, 22% find
those results somewhat or extremely difficult to understand and
act upon. Of those that use automated means, only 10% find the
same difficulty.

Conversely, 90% of those that use automated methods to parse
and cleanse data find the results of security tests somewhat or
extremely easy to understand and act upon, while only 77% report
the same ease by doing so manually. Notably, when examining
those with hybrid approaches to reviewing test results, we see
a “worst of both worlds” experience, with 35% citing difficulty
understanding and acting on results, and only 64% finding it easy
to do so.

The process of parsing and cleansing security test results reveals a
spectrum of approaches (Question 8). For example, 38% of respondents
manually parse and cleanse results from all tools. Twenty-five percent
report fully automated parsing and cleansing of results. Twenty-eight
percent use a combination of automated and manual parsing and
cleansing.

The prevalence of manual and hybrid approaches (66% combined)
indicates a significant opportunity for increased automation and
normalization in results processing. However, the challenge lies in
balancing automation with the need for human expertise in interpreting
complex security contexts.

Figure 3. Impact of review method on understanding results and taking action

20%

40%

60%

80%

100%

All are reviewed
automatically

All are reviewed
manually

Hybrid review
approach

10%

22%

35%

90%

77%

64% Results are difficult to
understand and act upon

Results are easy to
understand and act upon

https://www.blackduck.com

blackduck.com | 14

From interpretation to action
Constant security testing vs. development speed
tension

Q13. 	 Which statement best describes the relationship
between application security testing and software
development/delivery?

Application security testing severely slows
down development/delivery

18%

Application security testing moderately slows
down development/delivery

43%

Application security testing slightly slows
down development/delivery

25%

Total 86%

Despite advancements in tools and processes, tension remains
between thorough security testing and the need for development
speed, as shown in the responses to Question 13. Eighty-six
percent of respondents feel that security testing slows down
development by some amount (ranging from slightly to severely).
The plurality (43%) feels that testing moderately slows down
development. While one-quarter of respondents feel that security
testing slightly slows down development/delivery, and another 18%
feel that it severely slows the development life cycle.

There may be more insight, though, in looking at how software
projects are added to the security testing queue and whether that is
an impediment to development and delivery pipelines. Of those that
report security testing severely slows down their pipelines, 33%
manage their test queues entirely manually, compared to 17% that
manage pipelines entirely through automation.

These statistics underscore the ongoing challenge of integrating
security seamlessly into fast-paced development cycles without
becoming a bottleneck.

Role-based differences
When examining potential differences in security testing’s impact on
development and delivery pipelines, there are a few clear distinctions
among roles, depicted in Figure 4.

AppSec teams, perhaps due to their proximity to the testing process or
the pressures applied to them to accelerate review, show the greatest
sentiment that tests moderately or severely impede pipelines (65%).

Similarly, 58% of dev/engineering personnel share this sentiment. It’s
important to note that visibility into security testing is a significant
challenge for dev/engineering teams, making it likely more difficult for
them to assess the impact of security tools. This can make a concerted
DevSecOps initiative more difficult to implement, as critical contributors
are unable to close feedback loops and optimize efforts appropriately.

Figure 4. AppSec and dev/engineering perception of security testing’s impact on development/delivery

0

10

20

30

40

50

Does not slow
down

dev/delivery

Slightly slows
down

dev/delivery

Moderately
slows down
dev/delivery

Severely slows
down

dev/delivery

Not enough
visibility

10%

3%

40%

25%
20%

31%

44%

14% 12%

1%

AppSec

Dev/engineering

https://www.blackduck.com

blackduck.com | 15

Let’s now extend each role’s perception of pipeline impediment to include
the method of managing the security testing queue. We can validate
that each role benefits from automating security testing. When manually
managing testing queues, 29% of dev/engineering personnel and 44%
of security personnel feel severe impact on development and delivery
timelines. When managing testing queues through automation, only 16%
of dev/engineering personnel and 19% of security personnel feel a severe
impact to development speed.

This illustrates a great benefit to development and delivery pipelines, yet
also defines a consistent perception among dev/engineering teams that
security testing tends to negatively impact their workflows. Ultimately,
dev/engineering teams report only a 13% reduction in perceived
slowdown, whereas security teams report a 25% reduction.

How remediation is accomplished
A major goal of security testing is to drive remediation efforts. Our
survey reveals several key aspects of the remediation process among
respondents.

The responses to Questions 10 and 11 indicate that organizations are
actively implementing automated security measures throughout the
development life cycle, with a focus on communication, prevention, and
integration with existing workflows. However, there’s still significant room
for wider adoption of these practices.

Prioritizing issues for remediation

Q10. 	 Which statement best describes your approach to prioritizing
detected security issues for remediation?

Issues are automatically prioritized for
remediation based on policies/risk tolerance

49%

Issues are manually prioritized for remediation 43%

Question 10 shows that nearly half the surveyed organizations are using
automated systems to prioritize security issues, indicating a significant
adoption of advanced risk management practices. But a substantial
portion (43%) still rely on manual prioritizations. The close split between
automated and manual prioritization suggests that the arena of software
security testing is in a transition phase, with many organizations likely
using a hybrid approach.

What happens when security issues are discovered

Q11. 	 What actions/mechanisms occur automatically as a result of
application security testing results or policy violations?

Alerting to upstream contributors (e.g., developers,
engineers, architects)

38%

Assignment to developers via issue management
workflows (e.g., Jira, Slack)

36%

Alerting to downstream stakeholders (e.g., security
team, partners, customers)

32%

Prevent checking-in of code to SCM/repositories 32%

Prioritization for triage and remediation 32%

Prevent addition of compiled assets into binary
repositories

30%

Block promotion into staging/production 28%

Breaking the build 24%

The responses to Question 11 reveal that organizations are employing
a variety of automated actions to address security issues, indicating a
mature, layered approach to security.

The top actions involve alerting various stakeholders (38% for upstream
contributors, 32% for downstream stakeholders), emphasizing the

Organizations are
actively implementing
automated security
measures throughout the
development life cycle, with
a focus on communication,
prevention, and integration
with existing workflows.
However, there’s still
significant room for wider
adoption of these practices.

https://www.blackduck.com

blackduck.com | 16

importance of communication in addressing security issues at a pace
required by DevOps and CI/CD methodologies. High percentages for
assignment via issue management tools (36%) reveal a focus on the
DevSecOps requirement for closed feedback loops between security and
development teams to accelerate remediation. Significant percentages
for actions such as preventing code check-ins (32%), blocking promotion
downstream (28%), and breaking builds (24%) demonstrate a shift toward
using automated, preventive security measures to preclude risks and
avoid realizing exploitable conditions in production environments.

However, while adoption of these automated actions is significant, there’s
still room for growth, as no single action is implemented by more than
38% of organizations.

How developers are informed of issues

Q12.	 Out of the following, how are developers/software engineers
in your organization notified of/assigned application security
issues for remediation?

Automated message via communication/collaboration
tools (e.g., email, Microsoft Teams, Slack)

42%

Automated alerts within the security tool (e.g., in-app
notification, dashboard)

40%

Automated alerts/assignment within issue management
tools (e.g., Jira, Trello)

39%

Automated alerts/logs within development tools (e.g., IDE) 36%

Automated alerts/logs within pipeline tools (e.g., build,
SCM, repos)

35%

Manual assignment (e.g., by manager or team lead) 32%

In the responses to Question 12, the top five methods of assigning
remediation issues are all automated, indicating a strong trend toward
automating the notification process. This aligns with broader DevSecOps
principles of integrating security seamlessly into development workflows.

The prevalence of alerts within development tools (36%) and pipeline
tools (35%) indicates an attempt to help developers fix issues more
quickly. There is a high percentage of responses citing alerts within
issue management tools (39%) and security tools (40%), which indicates
multiple locations to access necessary risk information. This creates
unnecessary deviations from development workflows. While not as
common as automated methods, manual assignment of issues is still
used by a significant portion (32%) of organizations.

The top five methods of
assigning remediation
issues are all automated,
indicating a strong trend
toward automating the
notification process.
This aligns with broader
DevSecOps principles
of integrating security
seamlessly into
development workflows.

https://www.blackduck.com

blackduck.com | 17

As we conclude this examination of the current state and future trajectory
of application security, it’s clear that DevSecOps is at a critical juncture.
Our findings reveal both progress and problems in current DevSecOps
practices.

Over 60% of respondents report that security testing moderately or
severely slows down development, highlighting the ongoing challenge of
integrating robust security practices without impeding agility. Over 80%
of organizations use between 6 and 20 security testing tools, indicating
a complex testing environment that can lead to integration challenges,
noise, and alert fatigue. In fact, 60% of respondents report that anywhere
from 21% to 60% of their security test results are noise, underscoring the
need for more-effective filtering and prioritization mechanisms.

While 49% of organizations now use automated prioritization for security
issues, reflecting a growing trend toward leveraging technology to
streamline security processes, a significant number of respondents

are still using manual processes in various aspects of their application
security testing and remediation workflows.

With over 90% of organizations using AI tools in some capacity for
software development, we’re witnessing a transformative shift in how
applications are built and secured. This adoption brings both new
capabilities and new security considerations. While adoption is high, only
24% of respondents are very confident in their policies, management, and
testing for AI-generated code, indicating an area in dire need of automated
processes.

The truth of the matter is that, while AI-assisted coding may be
accelerating development, security processes—which are already
struggling to keep up—are going to fall further behind without automation.

Take the time now to critically evaluate your organization’s approach to
software security testing.

Conclusion

of respondents report that
security testing moderately
or severely slows down
development

organizations now use
automated prioritization
for security issues

49% Over 90%
of organizations are using
AI tools in some capacity
for software development

Over 60%

https://www.blackduck.com

blackduck.com | 18

Scrutinize your tool stack. Are you drowning
in a sea of disparate solutions, or leveraging an
integrated, streamlined suite of security tools?

•	 Evaluate your tools and processes. Aim for consolidation and
results integration.

•	 Reduce tool proliferation and complexity where possible by
choosing a primary vendor with the experience and knowledge to
consolidate disparate tools into a comprehensive testing whole.

•	 Explore implementing an application security posture
management (ASPM) solution to integrate tools, automate
workflows, and normalize and prioritize results. Invest in tools
and processes that consolidate security test results and make
them more actionable and easier to understand across all roles in
the organization.

Evaluate your automation levels. Our survey
indicates that manual processes still dominate in
many organizations. Identify where automation
can be leveraged to boost speed, efficiency, and
consistency.

•	 Explore integrating automated security checks into your CI/CD
pipeline.

•	 Consider implementing infrastructure-as-code (IaC) with built-in
security policies.

•	 Provide developers with IDE plugins for real-time security
feedback and prioritized remediation guidance to help them fix
faster and cultivate their security capabilities.

Establish AI governance today. Establish
clear policies and procedures for the use of
AI in software development. Invest in tools
and processes designed to vet and secure AI-
generated code.

Successful organizations will be
those that view the challenges
outlined in this report not as
obstacles, but as opportunities for
transformation and improvement.
They’ll be the ones not just willing to
adapt to the changing landscape of
DevSecOps but determined to shape
it. The future of DevSecOps is not
predetermined—it’s waiting to be
defined.

What role will you play in the future
of DevSecOps?

•	 Static application security testing (SAST) is highly effective at
identifying coding flaws early in the development process. This is
crucial for vetting AI-generated code, which can inherit insecure
coding flaws from its training data.

•	 Similarly, examining AI-created code with a software composition
analysis (SCA) tool can help developers identify and secure outdated
or insecure third-party components, as well as open source libraries
with licenses that may potentially conflict with an organization’s
business goals for its software.

•	 Dynamic application security testing (DAST) detects vulnerabilities
at runtime and verifies issues’ exploitability. DAST scans are a critical
component of application security testing, and the rise in AI-generated
code only further highlights its importance. AI coding tools are trained
using publicly accessible code repositories, for better or for worse.
They are great for generating code quickly, but do not apply the same
contextual reasoning a developer would to determine the best way
to write code for a specific application. While teams can provide
this context to AI tools in the form of prompt engineering, there
are still limitations. Ensuring that the application is performing its
desired function, and doing so securely, relies on application security
testing. Doing so at the speed of AI-enabled development requires
that it is tightly integrated into pipelines to allow for the detection of
vulnerabilities in the context of the application in its running state.

•	 Ideally, all three security testing tools—SAST, SCA, and DAST—will
run atop a centralized platform or be managed through an ASPM
solution. You may also yield greater efficiency and scalability with
proper integration and coordination with other AppSec testing tools,
developer tools, and issue-trackers you are using.

•	 Protect sensitive data used to train AI models by ensuring that only
authorized personnel have access. Encrypt data both at rest and in
transit to prevent unauthorized access. Enforce the principle of least
privilege to grant AI systems the minimum access necessary to
perform their functions.

https://www.blackduck.com
https://www.blackduck.com/glossary/what-is-application-security-posture-management.html
https://www.blackduck.com/glossary/what-is-application-security-posture-management.html

blackduck.com | 19

Appendix
Technology

Cybersecurity

Application/
Software Development

Manufacturing

FinTech

Education

Banking/Financial

Telecommunications/
ISP

Healthcare

Retail

Media

Government

Insurance

Transportation

Nonprofit/Association

Utilities

Other

18%

7%

1%

0.5%

0.5%

4%

4%

2%

2%

2%

6%

3%

3%

6%

20%

11%

10%

Survey Respondents
Industries of Survey Respondents

Job Roles of Survey Respondents

CISO 16%

CTO/CPO 17%

InfoSec 14%

AppSec 11%

Dev/engineering 22%

DevOps 13%

Cloud ops 4%

QA/testing 2%

None of the above 1%

Survey Respondent Country
U.K. 12%

U.S. 13%

France 13%

Germany 13%

Finland 12%

China 12%

Singapore 12%

Japan 13%

Organization Headcount

Fewer than 100 4%

100–500 11%

501–1,000 13%

1,001–2,000 16%

2,001–5,000 17%

5,001–10,000 18%

10,001–15,000 10%

15,001–50,000 7%

50,001–100,000 14%

https://www.blackduck.com

blackduck.com | 20

Q4. 	 Approximately what percentage of your projects, branches,
and repositories are being included in your application
security testing queue?

Percentage of projects, branches, and
repositories included in testing queue

Percentage of
respondents

Up to 20% 4.86%

21%–40% 23.39%

41%–60% 36.77%

61%–80% 20.52%

81%–100% 8.72%

I do not have enough visibility to approximate
test coverage

5.75%

Q5. 	 Which of the following teams/departments determine which
application security tests are performed, when, and on which
projects?

Security 44.00%

Development/software engineering 42.22%

DevOps 36.57%

Quality assurance 33.99%

Compliance 28.15%

Cross-functional groups 21.01%

Legal 19.43%

None of the above 1.39%

Questions

Q1. 	 Which of the following criteria does your organization
consider when determining which application security
tests to run and when they are run?

Sensitivity of information accessed/transmitted
by the application

36.77%

General best practices recommended by third-
party organizations (e.g., OWASP)

35.88%

Ease-of-configuration or automation of the
security tests

35.38%

Industry requirements or regulatory compliance 34.99%

The application’s production environment 33.99%

Attestation of security processes to stakeholders
(e.g., customers, partners, investors)

33.70%

Business criticality of the application 32.80%

Release frequency or shipping deadline of the
application

30.82%

Recent publication of new vulnerabilities or zero-
days

29.34%

None of the above 2.78%

Q2. 	 Which statement best describes your process of configuring
and running application security tests across your SDLC or CI
pipeline?

Testing tools provided by the same vendor are
configured using a centralized interface and
automatically run with policies

29.53%

All tests are configured using a centralized interface
and automatically run with policies

25.77%

Each test is configured using its own interface and
automatically run with policies

22.20%

Each test is configured using its own interface and
manually run

15.46%

I am not involved with configuring or running
application security tests

4.16%

None of the above 2.87%

Q3. 	 Which of the following statements best describes the manner
in which new projects, branches, or repositories are added to
your application security testing queue?

All are added to the test queue manually (e.g.,
declared by dev team, selected by security team)

28.74%

All are added to the test queue automatically (e.g.,
detected by testing tools)

38.35%

Most are added to the test queue automatically; a
few are added manually

22.40%

Most are added to the test queue manually; a few
are added automatically

6.14%

I am not familiar with how items are added to the
security testing queue

4.36%

https://www.blackduck.com

blackduck.com | 21

Q10. 	 Which statement best describes your approach to prioritizing
detected security issues for remediation?

Issues are automatically prioritized for remediation
based on policies/risk tolerance

49.45%

Issues are manually prioritized for remediation 42.62%

I am not familiar with the process of prioritizing
issues

7.93%

Q11. 	 What actions/mechanisms occur automatically as a result of
application security testing results or policy violations?

Alerting to upstream contributors (e.g., developers,
engineers, architects)

37.66%

Assignment to developers via issue management
workflows (e.g., Jira, Slack)

35.58%

Alerting to downstream stakeholders (e.g., security
team, partners, customers)

32.11%

Prevent checking-in of code to SCM/repositories 32.41%

Prioritization for triage and remediation 31.81%

Prevent addition of compiled assets into binary
repositories

29.93%

Block promotion into staging/production 28.44%

Breaking the build 23.89%

No actions or mechanisms are automated, all are
manual based on test results

4.96%

Other 0.20%

Q6. 	 Approximately how many application security testing
tools does your organization use? This should include all
means to detect software vulnerabilities, noncompliance
with security standards, sensitive data leakage, and
policy violations.

Number of security testing tools
Percentage of
respondents

1–5 9.32%

6–10 33.50%

11–15 33.30%

16–20 14.57%

21+ 3.87%

I do not have enough visibility to
estimate the number of testing tools

5.45%

Q7. 	 Which statement best describes the clarity and
actionability of the results of your application security
tests?

Easy (Net) 72.25%

Security test results are extremely easy to
understand and to act upon

20.22%

Security test results are somewhat easy to
understand and to act upon

52.03%

Security test results are somewhat difficult to
understand and to act upon

17.54%

Security test results are extremely difficult to
understand and to act upon

4.26%

I am not involved with interpretation or action
upon the results of application security tests

5.95%

Difficult (Net) 21.80%

Q8. 	 Which statement best describes your approach to parsing and
cleansing the results of application security tests?

Results generated by all tools are manually parsed
and cleansed

38.06%

We can automatically parse and cleanse results
from some testing tools; the remainder are
manually parsed and cleansed

28.05%

Results generated by all tools are automatically
parsed and cleansed

25.27%

I am not involved with parsing and cleansing
application security test results

5.35%

None of the above 3.27%

Q9. 	 Approximately what percentage of security test results
are noise? For example: duplicative results, false positives,
conflicting with other tests/tools.

Percentage of noise in findings
Percentage of
respondents

0%–20% 15.06%

21%–40% 30.23%

41%–60% 30.23%

61%–80% 14.87%

81%–100% 2.78%

I do not have enough visibility into all tests and
results to identify noise

6.84%

https://www.blackduck.com

blackduck.com | 22

Q15. 	 How confident are you that you have the processes in place to
manage and secure AI-generated code?

Confident (Net) 84.94%

Very confident we have the policies and automated
testing in place

24.08%

Moderately confident we have the policies and
automated testing in place

41.33%

Slightly confident we have the policies and
automated testing in place

19.52%

Not at all confident we have the policies and
automated testing in place

6.05%

This is not a priority at this time, as using AI-
generated code is against company policies

4.46%

I do not have enough visibility into our processes to
manage and secure AI-generated code

4.56%

About Black Duck
Black Duck® offers the most comprehensive, powerful, and trusted
portfolio of application security solutions in the industry. We have an
unmatched track record of helping organizations around the world secure
their software quickly, integrate security efficiently in their development
environments, and safely innovate with new technologies. As the
recognized leaders, experts, and innovators in software security, Black
Duck has everything you need to build trust in your software. Learn more
at www.blackduck.com.
©2024 Black Duck Software, Inc. All rights reserved. Black Duck is a trademark of Black Duck Software, Inc. in the
United States and other countries. All other names mentioned herein are trademarks or registered trademarks of
their respective owners. October 2024

Q12. 	 Out of the following, how are developers/software
engineers in your organization notified of/assigned
application security issues for remediation?

Automated message via communication/
collaboration tools (e.g., email, Microsoft
Teams, Slack)

41.82%

Automated alerts within the security tool (e.g.,
in-app notification, dashboard)

40.14%

Automated alerts/assignment within issue
management tools (e.g., Jira, Trello)

39.35%

Automated alerts/logs within development
tools (e.g., IDE)

35.88%

Automated alerts/logs within pipeline tools
(e.g., build, SCM, repos)

34.69%

Manual assignment (e.g., by manager or team
lead)

32.11%

I am not familiar with how developers/
engineers are made aware of security issues

3.27%

None of the above 1.98%

Q13.	 Which statement best describes the relationship between
application security testing and software development/
delivery?

Application security testing severely slows down
development/delivery

18.04%

Application security testing moderately slows down
development/delivery

42.81%

Application security testing slightly slows down
development/delivery

24.68%

Application security testing does not slow down
development/delivery

9.22%

I do not have enough visibility to assess the
relationship accurately

5.25%

Q14. 	 Are your developers using AI, generative, or transformational
tools to write code and modify projects?

Yes (Net) 90.29%

Yes, all developers are permitted to, and do, use these
tools

26.86%

Yes, but only certain developers/teams are permitted
to, and do, use these tools

42.91%

Yes, while we do not allow the use of these tools, we
are aware that some developers use them

20.52%

No, developers are not permitted to, and do not, use
these tools

4.66%

I do not have enough visibility into development
processes to know if these tools are used

5.05%

https://www.blackduck.com
https://www.blackduck.com

	OLE_LINK40
	OLE_LINK22
	OLE_LINK8
	_Hlk177038371
	OLE_LINK10
	_Hlk177038773
	_Hlk177038870
	OLE_LINK24
	OLE_LINK1
	OLE_LINK2
	OLE_LINK11
	OLE_LINK41
	OLE_LINK43
	OLE_LINK14
	OLE_LINK15
	OLE_LINK16
	OLE_LINK17
	OLE_LINK13
	OLE_LINK19
	OLE_LINK21
	OLE_LINK20

